Angewandte
Chemie
The reaction shown in Equation (5) features nonenoliz-
able substrates together with N-benzoylimidazole as the
initiator. As the plots of the forward and reverse reactions
[1] For reviews of DCC, see: a) J. M. Lehn, Chem. Eur. J. 1999, 5,
2455 – 2463; b) S. J. Rowan, S. J. Cantrill, G. R. L. Cousins,
J. K. M. Sanders, J. F. Stoddart, Angew. Chem. 2002, 114, 938 –
993; Angew. Chem. Int. Ed. 2002, 41, 898 – 952; c) P. T. Corbett, J.
Leclaire, L. Vial, K. R. West, J.-L. Wietor, J. K. M. Sanders, S.
Otto, Chem. Rev. 2006, 106, 3652 – 3711.
[2] For selected recent applications of DCC, see: a) P. A. Brady,
R. P. Bonar-Law, S. J. Rowan, C. J. Suckling, J. K. M. Sanders,
Chem. Commun. 1996, 319 – 320; b) K. Oh, K.-S. Jeong, J. S.
Moore, Nature 2001, 414, 889 – 893; c) S. Otto, R. L. E. Furlan,
J. K. M. Sanders, Science 2002, 297, 590 – 593; d) A. F. M.
Kilbinger, S. J. Cantrill, A. W. Waltman, M. W. Day, R. H.
Grubbs, Angew. Chem. 2003, 115, 3403 – 3407; Angew. Chem.
Int. Ed. 2003, 42, 3281 – 3285; ; e) S. A. Vignon, J. Thibaut, T.
Iijima, H.-R. Tseng, J. K. M. Sanders, J. F. Stoddart, J. Am.
Chem. Soc. 2004, 126, 9884 – 9885; f) S. J. Cantrill, R. H. Grubbs,
D. Lanari, K. C. F. Leung, A. Nelson, K. G. Poulin-Kerstien, S. P.
Smidt, J. F. Stoddart, D. A. Tirrell, Org. Lett. 2005, 7, 4213 – 4216;
g) R. Cacciapaglia, S. Di Stefano, L. Mandolini, J. Am. Chem.
Soc. 2005, 127, 13666 – 13671; h) B. Shi, R. Stevenson, D. J.
Campopiano, M. F. Greaney, J. Am. Chem. Soc. 2006, 128, 8459 –
8467; i) L. Vial, R. F. Ludlow, J. Leclaire, R. PØrez-Fernµndez, S.
Otto, J. Am. Chem. Soc. 2006, 128, 10253 – 10257.
against time reveal (Figure 2), equilibrium is reached within
approximately one hour at 908C. The exchange reaction in
Equation (6), which features an N-butylamide, proceeds to
equilibrium with acetyl chloride as the initiator. This result
complements the data in Table 1 and Table 2, which feature
N-benzylic substrates and an N-benzylimide initiator.
[3] a) S. E. Eldred, D. A. Stone, S. H. Gellman, S. S. Stahl, J. Am.
Chem. Soc. 2003, 125, 3422 – 3423; b) J. M. Hoerter, K. M. Otte,
S. H. Gellman S. S. Stahl, J. Am. Chem. Soc. 2006, 128, 5177 –
5183.
[4] Mechanistic studies reveal that the rate of AlIII-catalyzed
transamidation is proportional to the concentrations of the
metal and the amine (see Ref. [3b]). Both of these species are
present at low concentration in amide metathesis. Thus far, we
have not identified practical conditions for amide metathesis
which involves a transamidation mechanism.
Figure 2. Plots of the approach to equilibrium for Equation (5) both in
[5] P. G. Swann, R. A. Casanova, A. Desai, M. M. Frauenhoff, M.
Urbancic, U. Slomczynska, A. J. Hopfinger, G. C. LeBreton,
D. L. Venton, Biopolymers 1996, 40, 617 – 625.
forward and reverse directions (based on GC analysis of carboxamides
&
*
7
and 9 ). Reaction conditions: 7 and 9 (0.23 mmol), KH
(0.092 mmol), 11 (0.046 mmol), diglyme (0.8 mL), 908C.
[6] This strategy finds loose precedent in the anionic, ring-opening
polymerization (ROP) of lactams, which employs imide (N-
acyllactam) and Brønsted base coinitiators. Polymer chain
initiation and propagation are believed to proceed through
attack of a deprotonated lactam on the imide carbonyl of the
initiator or polymer chain end. For a discussion, see: K.
Hashimoto, Prog. Polym. Sci. 2000, 25, 1411 – 1462.
[7] Typical reaction procedure: In a disposable vial (4 mL), a
1:1 mixture of amides (0.23 mmol) and base (20 mol%,
0.046 mmol) were mixed in diglyme (0.8 mL) under nitrogen.
To this mixture, imide initiator (20 mol%, 0.046 mmol) and
triphenylmethane (0.018 mol, 4.4 mg) as an internal standard
were added. The vials were sealed under nitrogen and placed
into a 48-well parallel reactor mounted on a vortexing mixer.
The reactions were heated to 1208C for 18 h and quenched with
water (1 mL). The organics were extracted into diethyl ether,
and product ratios were determined by GC analysis relative to
the triphenylmethane standard.
[8] See, for example: a) ref. [3b]; b) D. A. Kissounko, I. A. Guzei,
S. H. Gellman, S. S. Stahl, Organometallics 2005, 24, 5208 – 5210;
c) B. H. Huang, T. L. Yu, Y. L. Huang, B. T. Ko, C. C. Lin, Inorg.
Chem. 2002, 41, 2987 – 2994; d) Z. Zhang, L. L. Schafer, Org.
Lett. 2003, 5, 4733 – 4736.
In summary, we have shown that the metathesis of simple
secondary amides can be achieved through the combined
action of simple acylating agents and Brønsted bases. These
findings establish a conceptually novel strategy for inducing
carboxamide exchange reactivity. Significant challenges
remain to be overcome in this class of reactions, such as the
avoidance of competing decomposition reactions for amide
substrates bearing protons adjacent to the carbonyl, and the
enhancement of catalytic efficiency. We anticipate that
mechanistic studies will facilitate further advances.[10] The
results presented above provide a basis for implementing
carboxamide-based dynamic covalent chemistry, a prospect
that we are actively exploring.
[9] For imide preparation, see: R. P. Mariella, K. H. Brown, J. Org.
Chem. 1971, 36, 735 – 737.
[10] One reviewer noted that O-acylated intermediates might
participate in these reactions. Understanding the role of such
intermediates, if they indeed exist, and identifying catalyst-
decomposition pathways might reveal ways to achieve improved
catalytic activity at lower temperature.
Received: September 2, 2006
Published online: December 13, 2006
Keywords: amides · dynamic covalent chemistry ·
.
homogeneous catalysis · metathesis · synthetic methods
Angew. Chem. Int. Ed. 2007, 46, 761 –763
ꢀ 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
763