6136
Z. Tu et al. / Tetrahedron Letters 47 (2006) 6133–6137
4. Mitchell, T. N. J. Organometal. Chem. 1974, 71, 39.
5. (a) Russell, G. A.; Yao, C.-F.; Rajaratnam, R.; Kim, B.
J. Am. Chem. Soc. 1991, 113, 373; (b) Russell, G. A.;
Chen, P.; Yao, C.-F.; Kim, B. J. Am. Chem. Soc. 1995,
117, 5967; (c) Liu, J.-Y.; Jang, Y.-J.; Lin, W.-W.; Liu,
J.-T.; Yao, C.-F. J. Org. Chem. 2003, 68, 4030.
6. (a) Liu, Y.; Shen, B.; Kotora, M.; Nakajima, K.; Takah-
ashi, T. J. Org. Chem. 2002, 67, 7019; (b) Mizuno, K.;
Ikeda, M.; Toda, S.; Otsuji, Y. J. Am. Chem. Soc. 1988,
110, 1288.
7. Ding, Y.; Zhao, Z.; Zhou, C. Tetrahedron 1997, 53, 2899.
8. Carderelli, A. M.; Fagnoni, M.; Mella, M.; Albini, A.
J. Org. Chem. 2001, 66, 7320.
9. Barlett, P. D.; Funahashi, T. J. Am. Chem. Soc. 1962, 84,
2596.
10. For books and reviews, see: (a) Giese, B. In Radicals in
Organic Synthesis: Formation of Carbon–Carbon Bonds;
Pergamon: Oxford, 1986; (b) Motherwell, W. B.; Crich, D.
In Free Radical Chain Reactions in Organic Synthesis;
Academic Press: London, 1992; (c) Fossey, J.; Lefort, D.;
Sorba, J. In Free Radicals in Organic Synthesis; Wiley:
Chichester, 1995; (d) Renaud, P.; Sibi, M. P. In Radicals in
Organic Synthesis; Wiley-VCH: Weinheim, 2001; Vols. 1
and 2; (e) Ollivier, C.; Renaud, P. Chem. Rev. 2001, 101,
3415.
11. (a) Li, C.-J.; Chan, T.-H. In Organic Reactions in Aqueous
Media; John Wiley & Sons: New York, 1997; (b) Liu,
J.-T.; Yao, C.-F. Tetrahedron Lett. 2001, 42, 6147.
12. (a) Cabello, J. A.; Campelo, J. M.; Garcia, A.; Luna, A.;
Marinas, J. M. J. Org. Chem. 1984, 49, 5195; (b)
Choudary, B. M.; Lakshmi Kantam, M.; Kavita, B.;
Venkat Reddy, Ch.; Figueras, F. Tetrahedron 2000, 56,
9357; (c) Shim, J.-G.; Park, J. C.; Cho, C. S.; Shim, S. C.;
Yamamoto, Y. Chem. Commun. 2002, 8, 852; (d) Ren, Z.;
Cao, W.; Tong, W. Synth. Commun. 2002, 32, 3475; (e)
Khan, F. A.; Dash, J.; Satapathy, R.; Upadhyay, S. K.
Tetrahedron Lett. 2004, 45, 3055.
In addition to malononitrile 2, dimethylmalonate 12 was
also reacted with benzaldehyde 1a in benzene solution
with a Dean–Stark apparatus under refluxing overnight
to produce 13 which then underwent free radical reac-
tions with Et3B or RI 5/Et3B in the same solution at
room temperature to give 14. Although the yield of 13
was very high (NMR yield 100%), the yields of the free
radical product 14 were much lower as compared with
reactions using 2. Not only the monoalkylated products
14a1, 14b1, and 14c1 but also the disubstituted products
14a2 and 14b2 were isolated. In the case of ethyl radical,
the major product was the dialkylated compound 14a2
(38%), and only a trace amount of the monoalkylated
product 14a1 was observed. Both the monoalkylated
product 14b1 (36%) and the dialkylated product 14b2
(15%) were produced when isopropyl iodide was em-
ployed. Nevertheless, only a low yield of the mono-
alkylated product 14c1 (19%) was obtained when tert-
butyl radical was used. All of these results are shown
as Eq. 6.
In conclusion, we developed an easy and effective
method for preparing medium to high yields of alkyl-
ated malononitrile or dimethyl malonate derivatives
using a carbonyl compound, malononitrile or dimethyl
malonate, and triethylborane or iodoalkanes/
triethylborane in an ether–water biphase medium in
the presence of atmospheric oxygen under one-pot
conditions.
Acknowledgements
Financial support of this work by the National Science
Council of the Republic of China is gratefully
acknowledged.
13. Typical procedures: 4-chlorobenzaldehyde 1d (211 mg,
1.5 equiv), malononitrile
2
(66 mg, 1.0 mmol) and
NH4OAc (8 mg, 0.1 equiv) were added to water (10 mL).
The mixture was heated at 50–60 °C for 20 min. After
cooling to room temperature, ether (10 mL) was then
added to the mixture with stirring to form a biphase
system. 5-Iodo-2-adamantanone 11 (1104 mg, 4.0 equiv)
followed by 1 M Et3B(hex.) (3 mL, 3.0 equiv) were added to
the above solution equipped with an automatic air-
pumping apparatus. Several minutes later, the ether layer
was washed with dilute HCl(aq), dried over MgSO4, filtered
and the filtrate concentrated in vacuo to give the crude
product 11. The pure compound was obtained as a white
solid by flash column chromatography on silica gel using
References and notes
1. (a) Freeman, F. Chem. Rev. 1969, 69, 591; (b) Fatiadi, A.
J. Synthesis 1978, 165; (c) Fatiadi, A. J. Synthesis 1978,
241; (d) Freeman, F. Chem. Rev. 1980, 80, 329; (e)
Tanaka, K. In Solvent-Free Organic Synthesis; Wiley-
VCH GmbH & Co. KGaA, 2003.
2. (a) Schenck, R.; Finken, H. Ann. Chem. 1928, 462, 267; (b)
Corson, B. B.; Stoughton, R. W. J. Am. Chem. Soc. 1928,
50, 2825; (c) Cope, A. C.; Hoyle, K. E. J. Am. Chem. Soc.
1941, 63, 733; (d) Mowry, D. T. J. Am. Chem. Soc. 1945,
67, 1050.
3. (a) Campaigne, E.; Mais, D. E.; Yokley, E. M. Synth.
Commun. 1974, 4, 379; (b) Campaigne, E. Synthesis 1976,
705; (c) Sebti, S.; Saber, A.; Rhihil, A. Tetrahedron Lett.
1994, 35, 9399; (d) Kantam, M. L.; Choudary, B. M.;
Reddy, Ch. R.; Rao, K. K.; Figueras, F. Chem. Commun.
1998, 1033; (e) Sabitha, G.; Reddy, B. V. S.; Babu, R. S.;
Yadav, J. S. Chem. Lett. 1998, 773; (f) Balalaie, S.;
Nemati, N. Synth. Commun. 2000, 30, 869; (g) Morrison,
D. W.; Forbes, D. C.; Davis, J. H. Tetrahedron Lett. 2001,
42, 6053; (h) Garden, S. J.; Guimaraes, C. R. W.; Correa,
M. B.; Oliveira, C. A. F.; Pinto, A. D. C.; Alencastro, R.
B. D. J. Org. Chem. 2003, 68, 8815; (i) Nair, V.; Menon,
R. S.; Beneesh, P. B.; Sreekumar, V.; Bindu, S. Org. Lett.
2004, 6, 767; (j) Zhang, M.; Zhang, A.-Q. Synth. Commun.
2004, 24, 4531.
1
hexane–EA (3:1) as the eluent. Mp 171–172 °C. H NMR
(400 MHz, CDCl3): d 7.42–7.40 (d, J = 8.5 Hz, 2H), 7.32–
7.30 (m, 2H), 4.28–4.27 (d, J = 5.2 Hz, 1H), 2.95–2.93 (d,
J = 5.2 Hz, 1H), 2.58 (s, 2H), 2.23 (s, 1H), 1.96 (s, 10H).
13C NMR (100 MHz, CDCl3): d 215.5, 135.2, 132.9, 130.7,
129.2, 112.8, 112.5, 55.7, 45.7, 45.6, 41.8, 40.9, 38.8, 38.0,
37.9, 36.3, 27.5, 24.0. GC–MS (EI): m/z (%) 338 (10) [M+],
163 (39), 149 (100), 121 (39), 93 (41), 79 (31), 67 (8), 55 (8),
41 (8). IR (KBr): m (cmꢀ1) 3455, 2931 (CH stretch, vs),
2860, 2254 (CN stretch, m), 1714 (C@O stretch, vs), 1595,
1494, 1455, 1416, 1363, 1300, 1271, 1223, 1096, 1066, 1014.
14. Selected data:
Compound 4c: Colorless oil. 1H NMR (400 MHz,
CDCl3): d 3.76 (s, 1H), 1.77–1.71 (q, J = 7.5 Hz, 2H),
1.67–1.52 (m, 9H), 1.42–1.36 (m, 1H), 0.95–0.91 (t,
J = 7.5 Hz, 3H). 13C NMR (100 MHz, CDCl3): d 112.0,
40.8, 32.2, 32.0, 26.6, 25.1, 21.2, 7.4. GC–MS (EI): m/z (%)
176 (trace) [M+], 175 (trace), 147 (17), 111 (100), 81 (38),