Helvetica Chimica Acta Vol. 85 (2002)
4367
determined in a g-counter. Each data point is the result of the average of triplicate wells and was analyzed by
nonlinear-regression analysis with the Allfit program.
Computational Methods. Molecular-mechanics calculations were performed within the framework of
MacroModel [26] (version 5.5) by means of the MacroModel implementation of the AMBER all-atom force
field [27] (denoted AMBER*) and the implicit water GB/SA solvation model of Still et al. [22]. The torsional
space of each AGA cyclopeptide was randomly varied with the Monte Carlo conformational search of Chang
et al. [21]. Ring-closure bonds were defined in the six-membered ring of the 6,5-fused bicyclic lactams and in the
cyclopeptide ring. Amide bonds were included among the rotatable bonds. For each search, at least 1000 starting
structures for each variable torsion angle were generated and minimized until the gradient was less than 0.05 kJ
äÀ1 molÀ1 by the truncated Newton Raphson method [28] implemented in MacroModel. Duplicate
conformations and those with an energy greater than 6 kcal molÀ1 above the global minimum were discarded.
The nature of the stationary points individuated was tested by computing the eigenvalues of the second-
derivative matrix.
Simulations of the RGD cyclic peptides were performed at 300 K with the Monte Carlo/Stochastic
Dynamics (MC/SD) hybrid simulation algorithm [23], applying the AMBER* all-atom force field and the water
GB/SA continuum solvation model. A time step of 1 fs was used for the stochastic-dynamics (SD) part of the
algorithm. The total simulation time was 10 ns for each RGD cyclopeptide, and samples were taken at 1 ps
intervals, yielding 10000 conformations for analysis.
The authors thank CNR and MURST (COFIN research programs) for financial support and CILEA for
computing facilities.
REFERENCES
[1] R. O. Hynes, Cell 1987, 48, 549; E. Ruoslahti, M. D. Pierschbacher, Science 1987, 238, 491; M. J. Humphries,
Biochem. Soc. Trans. 2000, 28, 311; B. P. Eliceiri, D. A. Cheresh, Curr. Opin. Cell Biol. 2001, 13, 563.
[2] J. A. McDonald, J. Biol. Chem. 2000, 275, 21783; A. E. Aplin, A. Howe, S. K. Alahari, R. L. Juliano,
Pharmacol. Rev. 1998, 50, 197; F. G. Giancotti, E. Ruoslahti, Science 1999, 285, 1028; F. G. Giancotti, Nat.
Cell. Biol. 2000, 2, E13.
[3] S. A. Mousa, D. A. Cheresh, Drug Discov. Today 1997, 2, 187; M. A. Arnaout, Immunol. Rev. 1990, 114,
145; R. O. Hynes, Cell 1992, 69, 11.
[4] E. F. Plow, T. A. Haas, L. Zhang, J. Loftus, J. W. Smith, J. Biol. Chem. 2000, 275, 21785; K. Suehiro, J. W.
Smith, E. F. Plow, J. Biol. Chem. 1996, 271, 10365.
[5] D. G. Stupack, D. A. Cheresh, Science×s Signal Transduction Knowledge Environment 2002, 119, pe7; J.
Folkman, Nature Med. 1995, 1, 27; J. Folkman, Nature Biotechnol. 1997, 15, 510; H. P. Hammes, M.
Brownlee, A. Jonczyk, A. Sutter, K. T. Preissner, Nature Med. 1996, 2, 529; B. P. Eliceiri, D. A. Cheresh, J.
Clin. Invest. 1999, 103, 1227.
[6] P. C. Brooks, R. A. Clark, D. A. Cheresh, Science 1994, 264, 569; M. E. Duggan, J. H. Hutchinson, Exp.
Opin. Ther. Pat. 2000, 10, 1367.
[7] M. Friedlander, P. C. Brooks, R. W. Shaffer, C. M. Kincaid, J. A. Varner, D. A. Cheresh, Science 1995, 270,
1500.
[8] R. Haubner, D. Finsinger, H. Kessler, Angew. Chem., Int. Ed. 1997, 36, 1374; A. C. Bach II, J. R. Espina,
S. A. Jackson, P. F. Stouten, J. L. Duke, S. A. Mousa, W. F. DeGrado, J. Am. Chem. Soc. 1996, 118, 293; G.
M¸ller, M. Gurrath, H. Kessler, J. Comput.-Aided Mol. Des. 1994, 8, 709; R. M. Scarborough, M. A.
Naughton, W. Teng, J. W. Rose, D. R. Phillips, L. Nannizzi, A. Arfsten, A. M. Campbell, I. F. Charo, J. Biol.
Chem. 1993, 268, 1066.
[9] R. Haubner, R. Gratias, B. Diefenbach, S. L. Goodman, A. Jonczyk, H. Kessler, J. Am. Chem. Soc. 1996,
118, 7461.
[10] E. Lohof, E. Planker, C. Mang, F. Burkhart, M. A. Dechantsreiter, R. Haubner, H.-J. Wester, M. Schwaiger,
G. Hˆlzemann, S. L. Goodman, H. Kessler, Angew. Chem., Int. Ed. 2000, 39, 2761; F. Schumann, A. M¸ller,
M. Koksch, G. M¸ller, N. Sewald, J. Am. Chem. Soc. 2000, 122, 12009; R. Haubner, W. Schmitt, G.
Hˆlzemann, S. L. Goodman, A. Jonczyk, H. Kessler, J. Am. Chem. Soc. 1996, 118, 7881.
[11] M. A. Dechantsreiter, E. Planker, B. Math‰, E. Lohof, G. Hˆlzemann, A. Jonczyk, S. L. Goodman, H.
Kessler, J. Med. Chem. 1999, 42, 3033.
[12] H. N. Lode, T. Moehler, R. Xiang, A. Jonczyk, S. D. Gillies, D. A. Cheresh, R. A. Reisfeld, Proc. Natl.
Acad. Sci. U.S.A. 1999, 96, 1591.