C O M M U N I C A T I O N S
Table 2. Regioselective Hydroformylation of Functionalized
Table 1. Hydroformylation of 1-Octenea
Terminal Alkenes with the Rhodium/6-DPPon (2) Catalyst in
Comparison to the Standard Industrial Rhodium/PPh3 Catalyst
entry
ligand
T (°C)
conv. (%)b
isom. (%)b
l:bb
1
2
3
4
5
6
PPh3
PPh3
t-Bu-XANTPHOS
t-Bu-XANTPHOS
2
2
65
80
65
80
65
80
22
98
6
31
56
96
0.3
9
1
2
3
73:27
72:28
98:2
98:2
97:3
96:4
8
a Reaction parameters: Rh:L:1-octene (1:20:7000), c (1-octene) ) 1.4
M, 4 h, toluene, 10 bar CO/H2 (1:1). b Determined by GC analysis.
a Reaction parameters: Rh:L:alkenic substrate (1:20:1000), c (alkene)
) 0.698 M, toluene, 10 bar CO/H2 (1:1), 70 °C. Full conversion was reached
in every case after 20 h. b Determined by GC and NMR analysis of crude
reaction mixture after 20 h. c Isolated as the corresponding γ-lactol.
Figure 2. Temperature dependence of n-selectivity upon hydroformylation
of 1-octene with the 6-DPPon (2)/rhodium catalyst.
°C, linearity stays high in the range of 95-97%. Above 110 °C,
this regioselectivtiy breaks down to values as low as 80%, which
is close to the regioselectivity range observed for the monodentate
PPh3/rhodium catalyst. These results indicate a continuous erosion
of the pyridone hydrogen bonding at temperatures above 110 °C.
The 6-DPPon/rhodium catalyst is operative as a chelation system
in the presence of functional groups such as bromides, acetates,
esters, and ketones (Table 2, entries 1-4) to give the linear
aldehydes in excellent yield (quantitative) and regioselectivity. We
next looked at functional groups possessing significant hydrogen
bonding capability to learn whether the ligand’s hydrogen bonding
system may be disrupted. Interestingly, neither a carbamate, a
salicylate, nor a free hydroxyl function was able to diminish the
high regioselectivity of the rhodium/6-DPPon catalyst (entries 5-8).
However, use of an alcoholic solvent or addition of acetic acid
resulted in low regioselectivity, which indicated a cleavage of the
intramolecular hydrogen bond of the rhodium/6-DPPon catalyst
under these conditions (entries 9,10).
rank the 6-DPPon/rhodium system among the most active and
regioselective catalysts for the n-selective hydroformylation of
terminal alkenes.
Acknowledgment. We thank DFG, the Fonds of the Chemical
Industry, and the Krupp Foundation (Krupp Award for young
university teachers to B.B.) for financial support, as well as Dr.
M. Keller for solving the X-ray crystal structure analysis of 5.
Supporting Information Available: Experimental details (PDF);
crystallographic information (CIF). This material is available free of
References
(1) For selected examples, see: (a) Regioselectivity: van Leeuwen, P. W.
N. M.; Casey, C. P.; Whiteker. In Rhodium Catalyzed Hydroformylation;
van Leeuwen, P. W. N., Claver, C., Eds.; Kluwer Academic Publishers:
Dordrecht, 2000; Chapter 4, pp 76-105. (b) Enantioselectivity: Ohkuma,
T.; Kitamura, M.; Noyori, R. Asymmetric Hydrogenation. In Catalytic
Asymmetric Synthesis; Ojima, I., Ed.; Wiley-VCH: New York, 2000;
Chapter 1, pp 1-110.
(2) Beak, P. Acc. Chem. Res. 1977, 10, 186-192.
(3) Chou, P.-T.; Wei, C.-Y.; Hung, F.-T. J. Phys. Chem. B 1997, 101, 9119-
9126.
(4) For details, see Supporting Information.
(5) Devon, T. J.; Phillips, G. W.; Puckette, T. A.; Stavinoha, J. L.; Vanderbilt,
J. J. U.S. Patent 4,694,109, 1987; Chem. Abstr. 1988, 108, 7890.
(6) Billig, E.; Abatjoglou, A. G.; Bryant, D. R. (UCC) U.S. Patent 4,769,498,
1988; Chem. Abstr. 1989, 111, 117287.
(7) (a) XANTPHOS: Kranenburg, M.; van der Burgt, Y. E. M.; Kamer, P.
C. J.; van Leeuwen, P. W. N. M.; Goubitz, K.; Fraanje, J. Organometallics
1995, 14, 3081. (b) t-Bu-XANTPHOS: van der Veen, L. A.; Kamer, P.
C. J.; van Leeuwen, P. W. N. M. Organometallics 1999, 18, 4765-4777.
(8) See: Breit, B.; Winde, R.; Mackewitz, T.; Paciello, R.; Harms, K. Chem.-
Eur. J. 2001, 7, 3106-3121 and references cited therein.
In summary, we herein realized a new concept for the construc-
tion of bidentate ligands employing self-assembly through hydrogen
bonding. Thus, the 6-diphenylphosphino-2-pyridone system 2 forms
a chelate in the coordination sphere of a transition metal center
through unusual nonsymmetrical pyridone/hydroxypyridine hydro-
gen bonding. This hydrogen bonding stays intact in a catalytic
reaction as proven upon highly regioselective hydroformylation
of terminal alkenes. Regioselectivities and reactivities observed
JA0348997
9
J. AM. CHEM. SOC. VOL. 125, NO. 22, 2003 6609