E. Brenna et al. / Journal of Molecular Catalysis B: Enzymatic 84 (2012) 94–101
101
was added dropwise within 10 min. After 48 h stirring, acetone (1 L)
was added to the mixture. After stirring overnight, ethyl acetate
(1 L) was added and the mixture was stirred 1 h. The two phases
were separated in a separatory funnel and the aqueous phase was
extracted twice with a 9:1 mixture of ethyl acetate-hexane. The
combined organic phase was concentrated under vacuum to a
small volume. After addition of 10 vol of ethyl acetate–hexane 9:1,
the organic phase was washed repeatedly with water and brine.
The oily residue obtained upon evaporation of the dried (Na2SO4)
organic phase was chromatographed on a silica gel column obtain-
ing with ca. 15–20% ethyl acetate in hexane the saturated alcohols
2, 15 and 16 and with neat ethyl acetate the diols 17, 18 and 19.
Deuterium Incorporation Experiments. The reactions were carried
out exactly as described above, with the only modification that ca.
1% of 99% D2O was added at the beginning to the reaction mixture.
(R)-2-Methyl-3-phenylpropan-1-ol ((R)-2). ıH (400 MHz; CDCl3):
7.33–7.10 (5H, m, aromatic hydrogens), 3.51 (1H, dd, J 5.8 and
10.6 Hz, CHHOH), 3.45 (1H, dd, J 5.8 and 10.3 Hz, CHHOH), 2.75
(1H, dd, J 6.4 and 13.5 Hz, PhCHH), 2.40 (1H, dd, J = 8.0 and 13.5 Hz,
PhCHH), 1.93 (1H, m, CHCH3), 0.90 (3H, d, J 6.7 Hz, CH3). ıC
(100.91 MHz; CDCl3): 16.3, 37.6, 39.6, 67.5, 125.8, 128.2, 129.1,
140.6. The material recovered (33% isolation yields) from the reduc-
tion of (Z)-6 loaded on the resin showed [␣]D =+10.9 (c 1.22,
CHCl3) with ee = 99% [lit. Ref. [36]: [␣]D = −10. (c 0.84, CHCl3) for
the (S) enantiomer (ee = 87%)]. The material recovered (45% isola-
tion yields) from the reduction of 7 loaded on the resin showed
[␣]D = +10.4 (c 1.22, CHCl3).
ıH (400 MHz; CDCl3): 7.30 (m, 4H, aromatic hydrogens), 6.29 (1H,
s, PhCHOAc)), 5.34 (1H, s, CH), 5.31 (1H, s, CH), 4.58 (1H, d, J
13.5, CHOAc), 4.42 (1H, d, J 13.2, CHOAc). ıC (100.91 MHz; CDCl3;
Me4Si): 21.1, 21.4, 64.3, 75.1, 116.3, 129.0, 129.1, 134.7, 136.6,
142.2, 169.9, 170.7.
2-(1-hydroxy-1-(3-methoxy-phenyl))-methyl-prop-2-en-1-ol
gens), 6.94 (1H, m, aromatic hydrogens), 6.72 (1H, m, aromatic
hydrogens), 5.14 (1H, s, ArCHOH)), 5.10 (1H, br s, CHH), 5.05 (1H,
br s, CHH), 4.00 (1H, d, J 13.4 Hz, CHHOH), 3.82 (1H, d, J 13.4 Hz,
CHHOH), 3.35 (3H, s, OCH3); ıD (75.77 MHz; C6H6;) 4.01 (CDHOH),
4.85 (CHDOH), 3.36 (OCH2D) (see Fig. 2b); ␦C (100.91 MHz, CDCl3):
55.2, 63.9, 76.2, 111.8, 113.2, 113.5, 118.6, 129.5, 143.5, 149.3,
159.8.
References
[1] D. Seebach, H.-O. Kalinowski, Nachr. Chem. Tech. Lab. 24 (1976) 25.
[2] C. Fuganti, Pure Appl. Chem. 62 (1990) 1449–1452.
[3] R. Csuk, B.I. Glaenzer, Chem. Rev. 91 (1991) 49–97;
B. Pscheidt, A. Glieder, Microb. Cell Factories 7 (2008) 25.
[4] E. Brenna, F.G. Gatti, A. Manfredi, D. Monti, F. Parmeggiani, Org. Process Res.
Dev. 16 (2012) 262–268;
M. Bechtold, E. Brenna, C. Femmer, F.G. Gatti, S. Panke, F. Parmeggiani, A. Sac-
chetti, Org. Process Res. Dev. 16 (2012) 269–276.
[5] R. Bernardi, R. Cardillo, D. Ghiringhelli, J. Chem. Soc. Chem. Commun. (1984)
460–461.
[6] G. Tuynenburg Muys, B. van der Ven, A.P. de Jonge, Nature 194 (1962) 995–996.
[7] H. Akita, A. Furuichi, H.K. Oshiji, K. Horikoshi, T. Oishi, Tetrahedron Lett. 23
(1982) 4051–4054.
[8] B. Wipf, E. Kupfer, R. Bertazzi, H.G.W. Leuenberger, Helv. Chim. Acta 66 (1983)
485–488.
(R)-2-Methyl-3-(4-chloro-phenyl)propan-1-ol
((R)-15).
ıH
(400 MHz; CDCl3): 7.40–7.05 (5H, m, aromatic hydrogens), 3.49
(2H, m, CH2OH), 2.75 (1H, dd, J 6.1 and 13.5 Hz, ArCHH), 2.39
(1H, dd, J 8.3 and 13.5 Hz, ArCHH), 1.91 (1H, m, CHCH3), 0.90 (3H,
d, J 6.7 Hz, CH3); ıC (100.91 MHz; CDCl3): 16.2, 37.6, 38.9, 67.4,
128.3, 130.5, 131.7, 139.0. The material recovered (15% isolation
yields) from the reduction of (Z)-9 loaded on the resin showed
[␣]D = +11.5 (c 3.5, CHCl3), with ee = 96%. The material recovered
(20% isolations yields) from the reduction of 11 loaded on the resin
showed [␣]D = +8.4 (c 3.0, CHCl3), with ee = 69%.
(R)-2-Methyl-3-(3-methoxy-phenyl)propan-1-ol ((R)-16). ıH
(500 MHz; CDCl3): 7.21 (1H, m, aromatic hydrogens), 6.79–6.71
(3H, m, aromatic hydrogens), 3.81 (3H, s, OCH3), 3.54 (1H,dd, J
10.5 and 5.8 Hz, CHHOH), 3.49 (1H, dd, J 10.5 and 6.0 Hz, CHHOH),
2.74 (1H, dd, J 6.5 and 13.5 Hz, ArCHH), 2.42 (1H, dd, J 7.9 and
13.5 Hz, ArCHH), 1.96 (1H, m, CHCH3), 0.94 (3H, d, J 6.8, CH3); ıD
(75.77 MHz, CHCl3): 3.81 (OCH2D), 3.54 (CDHOH), 2.75 (PhCDH),
0.94 (CH2D) (major isomer); 3.50 (CHDOH), 2.42 (PhCHD) (minor
isomer) (see Fig. 1c); ıC (100.91 MHz; CDCl3):16.4, 37.6, 39.8, 55.1,
67.6, 111.1, 114.9, 121.6, 129.1, 142.3, 159.6. The material recov-
ered (13% isolation yields) from the reduction of (Z)-10 loaded on
the resin showed [␣]D = +10.1 (c 1.1, CHCl3) with ee = 98% (HPLC).
The material recovered (19% isolation yields) from the reduction
of 12 loaded on the resin showed [␣]D = +9.4 (c 1.02, CHCl3) with
ee = 94% (HPLC). The material recovered (32% isolation yields) from
the reduction of (E)-15 dissolved in ethanol showed [␣]D = −5.7 (c
1.05, CHCl3) with ee = 54% (HPLC).
[9] B. Zhou, A.S. Gopalan, F. VanMiddlesworth, W.-R. Shieh, C. Sih, J. Am. Chem. Soc.
105 (1983) 5925.
[10] M. Utaka, S. Konishi, A. Mizouka, T. Ohkubo, T. Sakai, S. Tsuboi, A. Takeda, J. Org.
Chem. 54 (1989) 4989–4992.
[11] E. Brenna, G. Fronza, C. Fuganti, D. Monti, F. Parmeggiani, J. Mol. Cat. B: Enzym.
73 (2011) 17–21.
[12] M. Hall, C. Stueckler, B. Hauer, R. Stuermer, T. Friedrich, M. Breuer, W. Kroutil,
K. Faber, Eur. J. Org. Chem. (2007) 1511–1516.
[13] G. Fronza, C. Fuganti, S. Serra, Eur. J. Org. Chem (2009) 6160–6171.
[14] C. Fuganti, P. Grasselli, S. Servi, J. Chem. Soc. Perkin Trans. I (1983) 241–244.
[15] C. Fuganti, P. Grasselli, Chem. Ind. (Lond.) (1977) 983.
[16] E. Brenna, F.G. Gatti, D. Monti, F. Parmeggiani, A. Sacchetti, Chem. Commun. 48
(2012) 79–81.
[17] J. Wrobel, J. Millen, J. Sredy, A. Dietrich, B.J. Gorham, M. Malamas, J.M. Kelly,
J.G. Bauman, M.C. Harrison, L.R. Jones, C. Guinosso, K. Sestanj, J. Med. Chem. 34
(1991) 2504–2520.
[18] E. Brenna, F.G. Gatti, D. Monti, F. Parmeggiani, S. Serra, Adv. Synth. Catal. 354
(2012) 105–112.
[19] H. Simon, M. Kellner, H. Guenther, Angew. Chem. Int. Ed. 12 (1973) 146.
[20] C. Fuganti, D. Ghiringhelli, P. Grasselli, J. Chem. Soc. Chem. Commun. (1975)
846–847.
[21] H. Gerlach, B. Zagalak, J. Chem. Soc. Chem. Commun. (1973) 274–275.
[22] C. Fuganti, P. Grasselli, G. Poli, S. Servi, A. Zorzella, J. Chem. Soc. Chem. Commun.
(1988) 1619–1621.
[23] E.J. Corey, G.N. Widiger, J. Org. Chem. 40 (1975) 2975–2976.
[24] G. Fronza, C. Fuganti, P. Grasselli, G. Poli, S. Servi, J. Org. Chem. 53 (1988)
6153–6154.
[25] P. Ferraboschi, S. Reza-Elahi, E. Verza, E. Santaniello, Tetrahedron: Asymm. 10
(1999) 2639–2642.
ˇ
[26] V. Sunjic´, M. Majeric´, Z. Hamersˆak, Croat. Chem. Acta 69 (1996) 643–660.
[27] H. Huschmann, W. Strassburger, E. Friderichs, EP 0693475 A1, 1996.
[28] K. Biswas, C. Boerner, J. Gimeno, P.J. Goldsmith, D. Ramazzotti, A.L. So, S. Wood-
ward, Tetrahedron 61 (2005) 1433–1442.
[29] X. Feng, Y.Q. Yuan, H.L. Cui, K. Jiang, Y.C. Chen, Org. Biomol. Chem. 7 (2009)
3660–3662.
[30] I. Shiina, Y. Yamai, T. Shimazaki, J. Org. Chem. 70 (2005) 8103–8106.
[31] B. Das, B.S. Ksanth, K.R. Reddy, G. Satyalakshmi, R.A. Kumar, Chem. Lett. 37
(2008) 512–513.
2-(1-Hydroxy-1-phenyl)methyl-prop-2-en-1-ol (17). Yield 15%.
ıH (400 MHz; CDCl3): 7.40–7.23 (m, 5H, aromatic hydrogens), 5.35
(1H, s, PhCHOH)), 5.21 (2H, s, CH2), 4.14 (1H, d, J 13.2 Hz, CHOH),
4.04 (1H, d, J 13.2 Hz, CHOH). ıC (100.91 MHz; CDCl3; Me4Si): 64.0,
76.3, 113.4, 126.3, 127.7, 128.4, 141.8, 149.3.
2-(1-hydroxy-1-(4-chloro-phenyl))methyl-prop-2-en-1-ol (18).
Yield 8%. It was purified and characterised as the corresponding
diacetate, prepared by reaction with acetic anhydride in pyridine.
[32] A. Bouzide, Org. Lett. 4 (2002) 1347–1350.
[33] J.C. Depezay, Y. Le Merrer, Tetrahedron Lett. (1974) 2751–2754.
[34] R. Buchholtz, H.M.R. Hoffmann, Helv. Chim. Acta 74 (1991) 1213–1220.
[35] D. Basavaiah, N. Kumaragurubaran, Tetrahedron Lett. 42 (2001) 477–479.
[36] P.C. Hutchison, T.D. Heightman, D.J. Procter, J. Org. Chem. 69 (2004) 790–801.