2038 J ournal of Medicinal Chemistry, 1997, Vol. 40, No. 13
Brevitt and Tan
(2H, d, J ) 2.2 Hz); 13C NMR (CD3OD) δ 30.56, 38.17, 115.73,
116.00, 120.68, 127.02, 146.25, 150.11 170.48.
(4) Axelrod, J .; Tomchick, R. Enzymatic O-methylation of epineph-
rine and other catechols. J . Biol. Chem. 1958, 233 (3), 702-705.
(5) Borchardt, R. T.; Cheng, C. F. Purification and characterization
of rat heart and brain catechol methyltransferase activities.
Biochim. Biophys. Acta 1978, 522, 49-62.
(6) Borchardt, R. T.; Thakker, D. R. Affinity labeling of catechol-
O-methyltransferase by N-haloacetyl derivatives of 3, 5-di-
methoxy-4-hydroxyphenylethylamine and 3,4-dimethoxy-5-hy-
droxyphenylethylamine. Kinetics of inactivation. Biochemistry
1975, 14, 4542-4551.
(7) Burba, J . V.; Becking, G. C. Effect of the antioxidant norhy-
droguaiaretic acid on the in vitro activity of catechol-O-methyl-
transferase. Arch. Int. Pharmacodyn. Ther. 1969, 180, 323-329.
(8) Cedarbaum, J . M. Clinical pharmacokinetics of anti-parkinso-
nian drugs. Clin. Pharmokinet. 1987, 13, 141-178.
(9) Ma¨nnisto¨, P. T.; Kaakola, S. New selective COMT inhibitors:
useful adjuncts for Parkinson’s disease. Trends Pharmacol. Sci.
1989, 10, 54-56.
(10) Cedarbaum, J . M.; Leger, G.; Guttom, M. Reduction of circulating
3-O-methyldopa by inhibition of catechol-O-methyltransferase
with OR-611 and OR-462 in cynomolgus monkeys: implications
for the treatment of Parkinson’s disease. Clin. Neuropharmacol.
1991, 14 (4), 330-342.
(11) Booth, A. N.; Masri, M. S.; Robins, D. J .; Emerson, O. H.; J ones,
F. T.; Deeds, F. The metabolic fate of gallic acid and related
compounds. J . Biol. Chem. 1959, 234 (11), 3014-3016.
(12) Calne, D. B.; Sandler, M. L-Dopa and Parkinsonism. Nature
1970, 226, 21-24.
(13) Wade, L. A.; Katzman, R. 3-O-methyldopa inhibition of L-dopa
at the blood brain barrier. Life Sci. 1975, 17, 131-136.
(14) Wade, L. A.; Katzman, R. Synthetic amino acids and the nature
of L-dopa transport at the blood-brain barrier. J . Neurochem.
1975, 25, 837-842.
(15) Kuruma, I.; Bartholini, G.; Tissot, R.; Pletscher, A. The metabo-
lism of L-3-O-methyldopa, a precursor of dopa in man. Clin.
Pharmacol. Ther. 1971, 12, 678-682.
(16) Wylie, D. W.; Archer, S.; Arnold, A. Augmentation of pharma-
cological properties of catecholamines by O-methyltransferase
inhibitors. J . Pharmacol. Exp. Ther. 1960, 130, 239-244.
(17) Crout, J . R. Inhibition of catechol-O-methyltransferase by py-
rogallol in the rat. Biochem. Pharmacol. 1961, 6, 47-54.
(18) Ross, S. B.; Haljasmaa, Ø. Catechol-O-methyltransferase inhibi-
tors. In vitro inhibition of the enzyme in mouse-brain extract.
Acta Pharmacol. Toxicol. 1964, 21, 205-214.
(19) Belleau, B.; Burba, J . Tropolones: a unique class of potent non-
competitive inhibitors of S-adenosylmethionine-catechol meth-
yltransferase. Biochim. Biophys. Acta 1961, 54, 195-196.
(20) Kera¨nen, T.; Gordin, A.; Harjola, V. P.; Karlsson, M.; Korpela,
K.; Pentikainen, P. J .; Rila, H.; Seppa¨la¨, L.; Wikberg, T. The
effect of catechol-O-methyltransferase inhibition by entacapone
on the pharmacokinetics and metabolism of levodopa in healthy
volunteers. Clin. Neuropharmacol. 1993, 16 (12), 145-156.
(21) Ma¨nnisto¨, P. T.; Kaakkola, S.; Nissinen, E.; Linden, I. B.; Pohto,
P. Properties of novel effective and highly selective inhibitors of
catechol-O-methyltransferase. Life Sci. 1988, 43, 1465-1471.
(22) Ma¨nnisto¨, P. T.; Kaakkola, S. Rationale for selective COMT
inhibitors as adjuncts in the drug treatment of Parkinson’s
disease. Pharmacol. Toxicol. 1990, 66, 317-323.
(23) Wikberg, T.; Taskinen, J . Determination of catechol-O-methyl-
transferase inhibitor, nitecapone, in human plasma and urine
by high-performance liquid chromatography. J . Pharm. Biomed.
Anal. 1991, 9 (1), 59-64.
(24) Linden, I. B.; Nissinen, E.; Etemadzadeh, E.; Kaakkola, S.;
Ma¨nnisto¨, P. T.; Pohto, P. Favorable effect of catechol-O-
methyltransferase inhibition by OR-462 in experimental models
of Parkinson’s disease. J . Pharmacol. Exp. Ther. 1988, 247 (1),
289-293.
(25) Roberts, J . W.; Cora-Locatelli, G.; Braui, D.; Amantea, M. A.;
Mouradian, M. M.; Chase, T. N. Catechol-O-methyltransferase
inhibitor tolcapone prolongs levodopa/carbidopa action in Par-
kinsonian patients. Neurology 1993, 43 (12), 2685-2688.
(26) Merello, M.; Lees, A. J .; Webster, R.; Borvingdon, M.; Gordin,
A. The effect of entacapone, a peripherally acting catechol-O-
methyltransferase inhibitor, on the motor response to acute
L-dopa administration in patient with Parkinson’s disease. J .
Neurol. Neurosurg. Psychiatry 1994, 57, 186-189.
(27) Kaakkola, S.; Tera¨va¨inen, H.; Ahtila, S.; Rita, H.; Gordin, A.
Effect of entacapone, a COMT inhibitor, on clinical disability
and levodopa metabolism in Parkinsonian patients. Neurology
1994, 44 (1), 77-80.
(28) Kera¨nen, T.; Gordin, A.; Karlsson, M.; Korpela, K.; Pentika¨inen,
P. J .; Rita, H.; Schultz, E.; Seppa¨la¨, L.; Wikberg, T. Inhibition
of soluble catechol-O-methyltransferase and single-dose phar-
macokinetics after oral and intravenous administration of en-
tacapone. Eur. J . Clin. Pharmacol. 1994, 46, 151-157.
(29) Nutt, J . G.; Woodward, W. R.; Beckner, R. M.; Stone, C. K.;
Berggren, K.; Carter, J . H.; Gancher, S. T.; Hammerstad, J . P.;
Gordin, A. Effect of peripheral catechol-O-methytransferase
(COMT) inhibitor on the pharmacokinetics of levodopa in
Parkinsonian patients. Neurology 1994, 44 (5), 913-919.
N,N′-1,5-P en ta n ed iylbis(3,4-d ih yd r oxyben za m id e) Hy-
d r a te (8). The pentane derivative 8 was prepared from 3,4-
dimethoxybenzoic acid (5.0 g) and 1,5-diaminopentane using
the procedure described above. Recrystallization from MeOH/
H2O gave the desired product as a white powder (2.8 g, 57%):
mp 210-211 °C; IR 3532, 3376, 3118, 1575, 1515, 1455, 1319,
1117 cm-1; 1H NMR (CD3OD) δ 1.44 (2H, bm), 1.64 (4H, bm),
3.35 (4H, m), 6.78 (2H, d, J ) 8.2 Hz), 7.19 (2H, dd, J ) 2.2,
8.2 Hz), 7.28 (2H, J ) 2.2 Hz); 13C NMR (CD3OD) δ 25.38,
30.26, 40.77, 115.50, 115.91, 120.47, 126.58, 126.77, 146.58,
146.68, 150.71, 170.40.
N,N′-1,6-Hexa n ed iylbis(3,4-d ih yd r oxyben za m id e) (9).
The hexane derivative 9 was prepared from 3,4-dimethoxy-
benzoic acid (4.0 g) and 1,6-diaminohexane using the procedure
described above. Recrystallization from MeOH/H2O gave the
desired product as a white solid (1.4 g, 34%): mp 234-235 °C
dec; IR 3499, 3370, 3196, 1613, 1575, 1542, 1504, 1431, 1164,
1106 cm-1; 1H NMR (CD3OD) δ 1.43 (4H, bm), 1.62 (4H, bm),
3.35 (4H, bt), 6.79 (2H, d, J ) 8.2 Hz), 7.19 (2H, dd, J ) 2.1,
8.2 Hz), 7.27 (2H, d, J ) 2.1 Hz); 13C NMR (CD3OD) δ 27.72,
30.50, 40.81, 115.71, 115.82, 120.48, 127.29, 146.25, 149.98.
N,N′-1,2-Eth an ediylbis(3,4,5-tr ih ydr oxyben zam ide) Hy-
d r a te (10). The ethylene derivative 10 was prepared from
3,4,5-trimethoxybenzoic acid (2.0 g) and ethylenediamine using
the procedure described above. Recrystallization from MeOH/
H2O gave the desired product as a white solid (0.30 g, 16%):
mp 230-231 °C; IR 3509, 3322, 1581, 1531, 1452, 1365, 1032
cm-1; 1H NMR (CD3OD) δ 3.49 (4H, m), 6.98 (4H, s), 8.16 (2H,
bs); 13C NMR (CD3OD) δ 39.04, 105.48, 123.95, 135.13, 144.20,
166.58.
N,N′-1,3-P r op a n ed iylb is(3,4,5-t r ih yd r oxyb en za m id e)
Hyd r a te (11). The propane derivative 11 was prepared from
3,4,5-trimethoxybenzoic acid (2.0 g) and 1,3-diaminopropane
using the procedure described above. Recrystallization from
H2O (pH ) 1) gave the desired as an off-white solid (0.50 g,
26%): mp 210-211 °C dec; IR 1594, 1523, 1308, 1179, 1041
1
cm-1; H NMR (CD3OD) δ 1.76 (2H, bm), 3.39 (4H, m), 7.01
(4H, s), 8.13 (2H, bt); 13C NMR (CD3OD) δ 12.05, 34.60, 105.01,
123.75, 134.84, 144.04, 165.56.
N,N′-1,5-P en t a n ed iylb is(3,4,5-t r ih yd r oxyb en za m id e)
Hyd r a te (12). The pentane derivative 12 was prepared from
3,4,5-trimethoxybenzoic acid (2.0 g) and 1,5-diaminopentane
using the procedure described above. Recrystallization from
MeOH/H2O gave the desired product as a white solid (1.1 g,
58%): mp 210-211 °C dec; IR 1584, 1530, 1440, 1337, 1239,
1215 cm-1; 1H NMR (CD3OD) δ 1.40 (2H, bm), 1.61 (4H, bm),
3.29 (4H, m), 6.97 (4H, s), 7.66 (2H, bt); 13C NMR (CD3OD) δ
23.25, 28.08, 38.61, 105.74, 124.63, 135.04, 144.25, 166.52.
N,N′-1,6-Hexan ediylbis(3,4,5-tr ih ydr oxyben zam ide) Hy-
d r a te (13). The hexane derivative 13 was prepared from
3,4,5-trimethoxybenzoic acid (2.0 g) and 1,6-diaminohexane
using the procedure described above. Recrystallization from
MeOH/H2O gave the desired product as a white solid (0.57 g,
28%): mp 210-211 °C dec; IR 1582, 1538, 1445, 1348, 1041
1
cm-1; H NMR (CD3OD) δ 1.37 (4H, bm), 1.57 (4H, bm), 3.31
(4H, m), 6.98 (4H, s), 7.91 (2H, t, J ) 5.50 Hz); 13C NMR
(CD3OD) δ 24.85, 27.84, 37.81, 105.18, 124.15, 134.74, 144.01,
165.69.
Ack n ow led gm en t. This work was supported by a
grant from the University of Otago Science Division.
Refer en ces
(1) Schultz, E.; Tarpila, S.; Backstro¨m, A. C.; Gordin, A.; Nissinen,
E.; Pohto, P. Inhibition of human erythrocyte and gastroduode-
nal catechol-O-methyltransferase activity by nitecapone. Eur.
J . Clin. Pharmacol. 1991, 40, 577-580.
(2) Guldberg, H.; Marsden, C. Catechol-O-methyltransferase: phar-
macological aspects and physiological role. Pharmacol. Rev.
1975, No. 2, 135-206. 206.
(3) Guattari, B. High-performance liquid chromatographic deter-
mination with ultraviolet detection of S-adenosyl-L-methionine
and S-adenosyl-L-homocysteine in rat tissues and simulta-
neously of normetanephrine and metanephrine for phenyletha-
nolamine-N-methyltransferase or catechol-O-methyltransferase.
J . Chromatogr. 1991, 567, 254-260.