Y. Lee et al. / Bioorg. Med. Chem. 7 (1999) 1097±1104
1103
was puri®ed by ¯ash silica gel chromatography using
ethyl acetate as eluant to give 12 as a white foam
(420 mg, 55%); H NMR (DMSO-d6) d 1.38 (s, 9H),
(GM49725), M.A.M. (CA50414) and B.S.S.M.
(GM52419) and to the Robert A. Welch Foundation
(AQ-1192) for ®nancial support to B.S.S.M.
1
5.01 (d, J=7.74 Hz, 1H), 6.85 (dd, J=7.98, 1.41 Hz,
1H), 6.97 (s, 1H), 7.03 (d, J=7.88 Hz, 1H), 7.29 (t,
J=7.83 Hz, 1H), 7.51 (d, J=7.89 Hz, 1H); 13C NMR
(DMSO-d6) 28.1 (3C), 57.4, 111.9, 114.1, 114.4, 122.0,
129.7, 138.6, 139.2, 155.1, 171.9; HRMS (FAB, M + 1)
calcd for C14H18N3O4 292.1297; found 292.1303.
References and Notes
1. Kerwin, J. F.; Heller, M. Med. Res. Rev. 1994, 14, 23.
2. Marletta, M. A. J. Med. Chem. 1994, 37, 1899.
3. Olken, N. M.; Marletta, M. A. Biochemistry 1993, 32, 9677.
4. Fur®ne, E. S.; Harmon, M. F.; Paith, J. E.; Garvey, E. P.
Biochemistry 1993, 32, 8215.
m-Ureido-D,L-phenylglycine
(13).
Compound
12
(260 mg, 0.89 mmol) in 1 N HCl (20 mL) was heated
under re¯ux for 10 min. After evaporation of the sol-
vent, the residue was loaded on Dowex 50W-X8,
washed with water (40 mL), then eluted with 1 N
NH4OH (150 mL). The fractions stained by ninhydrin
treatment were combined and concentrated to yield 13
as a colorless solid (133 mg, 82%), which was recrys-
tallized from water; ESMS (M+1) 210.0; 1H NMR
(D2O) d 4.71 (s, 1H), 7.13 (m, 1H), 7.27 7.40 (3H); 13C
NMR (D2O) 58.3, 120.8, 122.4, 123.5, 130.2, 135.0,
138.7, 159.3, 173.1; HRMS (FAB, M+1) calcd for
C9H12N3O3 210.0878; found 210.0819. Anal. calcd for
C9H12N3O3: C, 51.67; H, 5.30; N, 20.09. found: C, 51.64;
H, 5.57; N, 20.09.
5. Garvey, E. P.; Oplinger, J. A.; Tanoury, G. J.; Sherman, P.
A.; Fowler, M.; Marshall, S.; Harmon, M. F.; Paith, J. E.;
Fur®ne, E. S. J. Biol. Chem. 1997, 269, 26669.
6. Shearer, B. G.; Lee, S.; Oplinger, J. A.; Frick, L. W.; Gar-
vey, E. P.; Fur®ne, E. S. J. Med. Chem. 1997, 40, 1901.
7. (a) Moore, W. M.; Webber, R. K.; Jerome, G. M.; Tjoeng,
F. S.; Misko, T. P.; Currie M. G. J. Med. Chem. 1994, 37,
3886. (b) Moore, W. M.; Webber, R. K.; Fok, K. F., Jerome,
G. M.; Kornmeier, C. M.; Tjoeng, F. S.; Currie, M. G. Bioorg.
Med. Chem. 1996, 4, 1559.
8. (a) Moore, W. M.; Webber, R. K.; Fok, K. F.; Jerome, G.
M.; Connor, J. R.; Manning, P. T.; Wyatt, P. S.; Misko, T. P.;
Tjoeng, F. S.; Currie, M. G. J. Med. Chem. 1996, 39, 699. (b)
Webber, R. K.; Metz, S.; Moore, W. M.; Connor, J. R.; Cur-
rie, M. G.; Fok, K. F.; Hagen, T. J.; Hansen, D. W., Jr.; Jer-
ome, G. M.; Manning, P. T.; Pitzele, B. S.; Toth, M. V.;
Trivedi, M.; Zupec, M. E.; Tjoeng, F. S. J. Med. Chem. 1998,
41, 96.
Enzymes
9. (a) Wol, D. J.; Lubeskie, A. Arch. Biochem. Biophys. 1995,
316, 290. (b) Fast, W.; Hu, M. E.; Silverman, R. B. Bioorg.
Med. Chem. Lett. 1997, 7, 1449.
10. Wol, D. J.; Gribin, B. J. Arch. Biochem. Biophys. 1994,
311, 293.
All of the enzymes used were recombinant enzymes
overexpressed in Escherichia coli. The murine macro-
phage iNOS was expressed24 and isolated25 as reported;
the bovine endothelial eNOS was prepared as previously
described,26 and the rat neuronal nNOS was expressed
and puri®ed as described.27
11. Wol, D. J.; Gribin, B. J. Arch. Biochem. Biophys. 1994,
311, 300.
12. Hansen, D. W., Jr.; Peterson, K. B.; Trivedi, M.; Kramer,
S. W.; Webber, R. K.; Tjoeng, F. S.; Moore, W. M.; Herone,
G. M.; Kornmeier, C. M.; Manning, P. T.; Connor, J. R.;
Misko, T. P.; Currie, M. G.; Pitzele, B. S. J. Med. Chem. 1998,
41, 1361.
13. Garvey, E. P.; Oplinger, J. A.; Fur®ne, E. S.; Ki, R. J.;
Laszlo, F.; Whittle, B. J. R.; Knowles, R. G. J. Biol. Chem.
1997, 272, 4959.
14. Zhang, H. Q.; Fast, W.; Marletta, M.; Martasek, P.; Sil-
verman, R. B. J. Med. Chem., 1997, 40, 3869.
15. Crane, B. R.; Arvai, A. S.; Gachhui, R.; Wu, C.; Ghosh,
D. K.; Getzo, E. D.; Stuehr, D. J.; Tainer, J. A. Science 1997,
278, 425.
Initial velocity measurements via the hemoglobin assay
The generation of nitric oxide by NOS was measured
using the hemoglobin capture assay,28 which utilizes
the rapid oxidation of oxyhemoglobin by NO to
produce methemoglobin, which is detected spectro-
photometrically at 401 nm (e=19,700 M 1 cm 1) on a
Perkin±Elmer Lamda 10 UV±vis spectrophotometer. A
typical assay mixture for nNOS and eNOS contained
10mM l-arginine, 1.6 mM CaCl2, 11.6mg/mL calmodu-
lin, 100 mM NADPH, 6.5 mM BH4, and 3 mM oxyhe-
moglobin in 100 mM HEPES buer (pH 7.5). The
reaction mixture for iNOS contained 10mM of l-arginine,
100 mM NADPH, 6.5 mM BH4, and 3 mM oxyhemoglobin
in 100 mM HEPES buer (pH 7.5). All assays were in a
®nal volume of 600 mL and were initiated with enzyme.
16. Gerber, N. C.; Rodriguez-Crespo, I.; Nishida, C. R.; Ortiz
de Montellano, P. R. J. Biol. Chem. 1997, 272, 6285.
17. Shearer, B. G.; Lee, S.; Franzmann, K. W.; White, H. A.
R.; Sanders, D. C. J.; Ki, R. J.; Garvey, E. P.; Fur®ne, E. S.
Bioorg. Med. Chem. Lett. 1997, 7, 1763.
18. Havlicek, L.; Hanus, J.; Sedmera, P.; Nemecek, J. Collect.
Czech. Chem. Commun. 1990, 55, 2074.
19. Bernatowicz, M. S.; Wu, Y.; Matsueda, G. R. J. Org.
Chem. 1992, 57, 2497.
Substrate activity/reversible inhibition measurements
20. Friis, P.; Kjñr, A. Acta Chem. Scand. 1963, 17, 2391.
21. McCall, T. B.; Boughton-Smith, N. K.; Palmer, M. J.;
Whittle, B. J. R.; Moncata, S. Biochem. J. 1989, 261, 293.
22. Collins, J. L.; Shearer, B. G.; Oplinger, J. A.; Lee, S.;
Garvey, E. P.; Salter, M.; Duy, C.; Burnette, T. C.; Fur®ne,
E. S. J. Med. Chem. 1998, 41, 2858.
Substrate activity was measured as described above
using varying concentrations of the alternative substrate
(1±3) instead of l-arginine. Ki values were determined
by the method of Dixon.29
23. This compound was prepared as follows: To a stirred
solution of n-propylamine (8.2 mL, 100 mmol) in diethyl ether
(150 mL) at 0 ꢀC was added cyanogen bromide (5.2 g,
50 mmol) in diethyl ether (30 mL) over a period of 10 min. The
Acknowledgements
The authors are grateful to the National Institutes of
Health for ®nancial support of this research to R. B. S.