Q.-H. Zheng et al. / Bioorg. Med. Chem. Lett. 17 (2007) 2220–2224
2223
7. Schafer, M. K.; Weihe, E.; Erickson, J. D.; Eiden, L. E.
J. Mol. Neurosci. 1995, 6, 225.
8. Schafer, M. K.; Weihe, E.; Eiden, L. E.; Erickson, J. D.
J. Mol. Neurosci. 1994, 5, 1.
tissues of interest, no bone and fat tissues were excised in
biodistribution study, and no bone and fat accumula-
tion data were reported.
9. Schafer, M. K.; Eiden, L. E.; Weihe, E. Neuroscience 1998,
84, 361.
10. Suszkiw, J. B.; Pilar, G. J. Neurochem. 1976, 26, 1133.
11. Kuhar, M. J.; Sethy, V. H.; Roth, R. H.; Aghajanian, G.
K. J. Neurochem. 1973, 20, 581.
The experimental details and characterization data for
compounds 3 and 1, new tracers [11C]1 and [18F]2, and
biodistribution study are given.32
In summary, an efficient and convenient chemical and
radiochemical synthesis of the precursors, reference,
standards and target tracers has been well developed.
The synthetic methodology of [11C]HC-3 and [18F]HC-
3 employed bis-tertiary amine precursor, featuring
primary N-[11C]methylation with [11C]CH3OTf and N-
[18F]fluoromethylation with [18F]FCH2OTf in a reaction
vessel, purification of 11C-methylated and 18F-fluorome-
thylated single-side quaternary amine intermediates on a
CM Sep-Pak cartridge, followed by secondary N-
[12C]methylation with CH3I and isolated final bis-qua-
ternary amines carbon-11 and fluorine-18 labeled
products [11C]HC-3 and [18F]HC-3 by SPE technique
on the same cartridge. The radiolabeling reactions and
purification are rapid, efficient, and convenient, and
resulting radiolabeled products were shown to have
moderate to excellent radiochemical yields. Preliminary
findings from biodistribution studies of both tracers in
9L-glioma rats indicate that uptakes in the heart and
tumor were observed, while very low brain uptake was
seen. Further study will be to determine the specificity
of binding of HC-3 analogue tracers to choline
transporters, and to explore structural modifications to
provide tracers for higher lipophilicity needed to cross
the blood-brain barrier for the purpose of CNS imaging
studies of CHT1.
12. Apparsundaram, S.; Ferguson, S. M.; Geroge, A. L., Jr.;
Blakely, R. D. Biochem. Biophys. Res. Commun. 2000, 276,
862.
13. Apparsundaram, S.; Ferguson, S. M.; Blakely, R. D.
Biochem. Soc. Trans. 2001, 29, 711.
14. Okuda, T.; Haga, T. FEBS Lett. 2000, 484, 92.
15. Misawa, H.; Nakata, K.; Matsuura, J.; Nagao, M.;
Okuda, T.; Haga, T. Neuroscience 2001, 105, 87.
16. Kus, L.; Borys, E.; Ping, C. Y.; Ferguson, S. M.; Blakely,
R. D.; Emborg, M. E.; Kordower, J. H.; Levey, A. I.;
Mufson, E. J. J. Comp. Neurol. 2003, 463, 341.
17. Ferguson, S. M.; Savchenko, V.; Apparsundaram, S.;
Zwick, M.; Wright, J.; Heilman, C. J.; Levey, A. I.;
Blakely, R. D. J. Neurosci. 2003, 23, 9697.
18. Hara, T.; Kosaka, N.; Shinoura, N.; Kondo, T. J. Nucl.
Med. 1997, 38, 842.
19. DeGrado, T. R.; Coleman, R. E.; Wang, S.; Baldwin, S.
W.; Orr, M. D.; Robertson, C. N.; Polascik, T. J.; Price,
D. T. Cancer Res. 2000, 61, 110.
20. DeGrado, T. R.; Baldwin, S. W.; Wang, S.; Orr, M. D.;
Liao, R. P.; Friedman, H. S.; Reiman, R.; Price, D. T.;
Coleman, R. E. J. Nucl. Med. 2001, 42, 1805.
21. Hara, T.; Bansal, A.; DeGrado, T. R. Mol. Imaging 2006,
5, 498.
22. Mulholland, K. K.; Wieland, D. M.; Kilbourn, M. R.;
Frey, K. A.; Sherman, P. S.; Carey, J. E.; Kuhl, D. E.
Synapse 1998, 30, 263.
23. Gao, M.; Miller, M. A.; DeGrado, T. R.; Mock, B. H.;
Lopshire, J. C.; Rosenberger, J. G.; Dusa, C.; Das, M. K.;
Groh, W. J.; Zipes, D. P.; Hutchins, G. D.; Zheng, Q.-H.
Bioorg. Med. Chem. 2007, 15, 1289.
24. Haarstad, V. B.; Domer, F. R.; Chihal, D. M.; Rege, A.
B.; Charles, H. C. J. Med. Chem. 1976, 19, 760.
25. Mock, B. H.; Mulholland, G. K.; Vavrek, M. T. Nucl.
Med. Biol. 1999, 26, 467.
26. Mock, B. H.; Zheng, Q.-H.; DeGrado, T. R. J. Labelled
Compd. Radiopharm. 2005, 48, S225.
27. Iwata, R.; Pascali, C.; Bogni, A.; Furumoto, S.; Terasaki,
K.; Yanai, K. Appl. Radiat. Isot. 2002, 57, 347.
28. Gillis, R. J.; Barry, J. A.; Ross, B. D. Magn. Reson. Med.
1994, 32, 310.
Acknowledgments
This work was partially supported by the Donald W.
Reynolds Foundation, the Susan G. Komen Breast Can-
cer Foundation BCTR0504022, NIH R01CA108620, and
Indiana Genomics Initiative (INGEN) of Indiana
University, which is supported in part by Lilly
Endowment Inc. The authors would like to thank
Barbara E. Glick-Wilson and Michael L. Sullivan for
their assistance in production of 11CH3OTf and K18F/
Kryptofix2.2.2. The referees’ criticisms and editor’s
comments for the revision of the manuscript are greatly
appreciated.
29. Walum, E. Cell Mol. Neurobiol. 1981, 1, 389.
30. Liu, X.; Wang, J.-Q.; Zheng, Q.-H. Biomed. Chromatogr.
2005, 19, 379.
31. Barinaga, M. Science 1999, 278, 1226.
32. Experimental details and characterization data.
(a) General: all commercial reagents and solvents were
used without further purification. 11CH3OTf was made
according to a literature procedure.25 18FCH2OTf was
made according to a modification of the literature
method.27 Melting points were determined on a MEL-
TEMP II apparatus and are uncorrected. 1H NMR
spectra were recorded on a Bruker QE 300 FT NMR
spectrometer using tetramethylsilane (TMS) as an internal
standard. Chemical shift data for the proton resonances
were reported in parts per million (ppm, d scale) relative to
internal standard TMS (d 0.0), and coupling constants (J)
are reported in hertz (Hz). The low resolution mass spectra
(LRMS) were obtained using an Agilent 1100 series LC/
MSD mass spectrometer. Thin layer chromatography
References and notes
1. Smart, L. A. J. Med. Chem. 1983, 26, 104.
2. Gilissen, C.; de Groot, T.; Bronfman, F.; van Leuven, F.;
Verbruggen, A. M.; Bormans, G. M. J. Nucl. Med. 2003,
44, 269.
3. Hoover, D. B.; Ganote, C. E.; Ferguson, S. M.; Blakely,
R. D.; Parsons, R. L. Cardiovasc. Res. 2004, 62, 112.
4. Woolf, N. J. Prog. Neurobiol. 1991, 37, 475.
5. Crick, S. J.; Sheppard, M. N.; Anderson, R. H.; Polak, J.
M.; Wharton, J. J. Anat. 1996, 188, 403.
6. Arvidsson, U.; Riedl, M.; Elde, R.; Meister, B. J. Comp.
Neurol. 1997, 378, 454.