similar heterocyclic) scaffold are required for efficient
binding to the target enzyme.8,9
Id en tifica tion of Regioisom er s in a Ser ies
of N-Su bstitu ted P yr id in -4-yl Im id a zole
Der iva tives by Regiosp ecific Syn th esis,
Because of the different substituents at the 4- and
5-positions of the imidazole nucleus placement of an
additional substituent at either one of the two imidazole
ring nitrogens generates two different regioisomers.
However, only at the ring nitrogen adjacent to the
pyridin-4-yl moiety (like in SB 210313, Figure 1) are
substituents tolerated without loss of p38 inhibition.2
With beneficial properties such as enhanced oral activ-
ity10 and reduced toxicity11 being ascribed to substituents
at the imidazole ring nitrogen, the regiospecific prepara-
tion of N1-substituted pyridin-4-yl imidazoles has been
addressed.1,12 However, if such N-substituted imidazoles
are prepared via a nonregiospecific synthetic pathway,
both regioisomers are usually formed3,13 and the assign-
ment of the correct regiochemistry becomes a challenging
task. In the structurally related class of 2,3-dihydroimi-
dazo[2,1-b]thiazole inhibitors of cytokine release, for
example, the molecular structures published for the
desfluoro congeners of regioisomers SK&F 86002 and
SK&F 86055 (Scheme 1) had been assigned on the basis
of spectroscopic data.14 The initial assignment, however,
was later disproved when X-ray crystallographic evidence
became available for these compounds.15 Like SK&F
86002 and SK&F 86055, methylsulfanylimidazoles ML
3375 and 1 (Figure 1) can be synthesized from suitable
imidazole-2-thione precursors (Scheme 1). Following the
discovery of 1H-imidazole 1 as a potent inhibitor of p38
MAP kinase and cytokine release,16 we sought to prepare
its N1-methylated analogue 2a (Scheme 3). Herein we
report the regiospecific synthesis of 2a as well as a fast
and convenient method to analytically distinguish the
N-substituted regioisomers of 2-methylsulfanylimidazole
derivatives using routine GC/MS and 1H NMR tech-
niques. This analytical protocol enabled us to unambigu-
ously determine the regioselectivity for the direct con-
1
GC/MS, a n d H NMR
Gerd K. Wagner,† Dunja Kotschenreuther,‡
Werner Zimmermann, and Stefan A. Laufer*
Institute of Pharmacy, Department of Pharmaceutical and
Medicinal Chemistry, Eberhard-Karls-University Tu¨bingen,
Auf der Morgenstelle 8, 72076 Tu¨bingen, Germany
stefan.laufer@uni-tuebingen.de
Received October 28, 2002
Abstr a ct: The regiospecific synthesis of 2a (Scheme 3), a
novel and potent pyridinyl imidazole inhibitor of p38 MAP
(mitogen-activated protein) kinase, and the regioselective
preparation of its regioisomer 2b (Scheme 4) are described.
Chromatographic and spectroscopic data are presented,
which in this class of compounds allow the unambiguous
identification of regioisomers prepared by a nonregiospecific
synthetic strategy. Biological data demonstrating the im-
portance of the correct regiochemistry for inhibition of p38
are given.
Several small molecule inhibitors of cytokine release
are currently being investigated for their potential as safe
and efficient antiinflammatory drugs. Work carried out
by various groups1-3 as well as in our own laboratory4,5
has identified polysubstituted imidazoles (Figure 1) as
potent inhibitors of p38 MAP kinase (for a recent review,
cf. J ackson and Bullington6). p38 is implicated in signal
transduction events leading to the release of proinflam-
matory cytokines interleukin 1â (IL-1â) and tumor
necrosis factor-R (TNF-R) from human monocytes,7 hence
the strong antiinflammatory effect exerted by p38 inhibi-
tors. Structure-activity relationships in this class of p38
inhibitors have revealed that the vicinal 4-fluorophenyl
and pyridin-4-yl moieties attached to an imidazole (or
* Author to whom correspondence should be addressed. Phone:
++49-7071-2972459. Fax: ++49-7071-295037.
(7) Lee, J . C.; Laydon, J . T.; McDonnell, P. C.; Gallagher, T. F.;
Kumar, S.; Green, D.; McNulty, D.; Blumenthal, M. J .; Heys, J . R.;
Landvatter, S. W.; Strickler, J . E.; McLaughlin, M. M.; Siemens, I. R.;
Fisher, S. M.; Livi, G. P.; White, J . R.; Adams, J . L.; Young, P. R. Nature
1994, 372, 739-746.
† Current address: Department of Pharmacy and Pharmacology,
University of Bath, Claverton Down, Bath BA2 4QN, United Kingdom.
‡ Current address: Ratiopharm GmbH, Department of Patent
Affairs, Graf-Arco-Strasse 3, 89079 Ulm, Germany.
(1) Boehm, J . C.; Smietana, J . M.; Sorenson, M. E.; Garigipati, R.
S.; Gallagher, T. F.; Sheldrake, P. L.; Bradbeer, J .; Badger, A. M.;
Laydon, J . T.; Lee, J . C.; Hillegass, L. M.; Griswold, D. E.; Breton, J .
J .; Chabot-Fletcher, M. C.; Adams, J . L. J . Med. Chem. 1996, 39, 3929-
3937.
(2) Gallagher, T. F.; Seibel, G. L.; Kassis, S.; Laydon, J . T.;
Blumenthal, M. J .; Lee, J . C.; Lee, D.; Boehm, J . C.; Fier-Thompson,
S. M.; Abt, J . W.; Soreson, M. E.; Smietana, J . M.; Hall, R. F.;
Garigipati, R. S.; Bender, P. E.; Erhard, K. F.; Krog, A. J .; Hofmann,
G. A.; Sheldrake, P. L.; McDonnell, P. C.; Kumar, S.; Young, P. R.;
Adams, J . L. Bioorg. Med. Chem. 1997, 5, 49-64.
(3) Liverton, N. J .; Butcher, J . W.; Claiborne, C. F.; Claremon, D.
A.; Libby, B. E.; Nguyen, K. T.; Pitzenberger, S. M.; Selnick, H. G.;
Smith, G. R.; Tebben, A.; Vacca, J . P.; Varga, S. L.; Agarwal, L.;
Dancheck, K.; Forsyth, A. J .; Fletcher, D. S.; Frantz, B.; Hanlon, W.
A.; Harper, C. F.; Hofsess, S. J .; Kostura, M.; Lin, J .; Luell, S.; O’Neill,
E. A.; Orevillo, C. J .; Pang, M.; Parsons, J .; Rolando, A.; Sahly, Y.;
Visco, D. M.; O’Keefe, S. J . J . Med. Chem. 1999, 42, 2180-2190.
(4) Laufer, S.; Striegel, H.-G.; Neher, K. PCT Int. Appl. 2000
(Merckle GmbH, Germany), WO 0017192, 2002, p 53.
(8) Tong, L.; Pav, S.; White, D. M.; Rogers, S.; Crane, K. M.; Cywin,
C. L.; Brown, M. L.; Pargellis, C. A. Nat. Struct. Biol. 1997, 4, 311-
316.
(9) Wang, Z.; Canagarajah, B. J .; Boehm, J . C.; Kassisa, S.; Cobb,
M. H.; Young, P. R.; Abdel-Meguid, S.; Adams, J . L.; Goldsmith, E. J .
Structure 1998, 6, 1117-1128.
(10) Adams, J . L.; Boehm, J . C.; Gallagher, T. F.; Kassis, S.; Webb,
E. F.; Hall, R.; Sorenson, M.; Garigipati, R. S.; Griswold, D. E.; Lee, J .
C. Bioorg. Med. Chem. Lett. 2001, 11, 2867-2870.
(11) Adams, J . L.; Boehm, J . C.; Kassis, S.; Gorycki, P. D.; Webb,
E. F.; Hall, R.; Sorenson, M.; Lee, J . C.; Ayrton, A.; Griswold, D. E.;
Gallagher, T. F. Bioorg. Med. Chem. Lett. 1998, 8, 3111-3116.
(12) Laufer, S.; Wagner, G.; Kotschenreuther, D. Angew. Chem., Int.
Ed. 2002, 41, 2290-2293.
(13) Chang, L. L.; Sidler, K. L.; Cascieri, M. A.; de Laszlo, S.; Koch,
G.; Li, B.; MacCoss, M.; Mantlo, N.; O’Keefe, S. J .; Pang, M.; Rolando,
A.; Hagmann, W. K. Bioorg. Med. Chem. Lett. 2001, 11, 2549-2553.
(14) Klose, W.; Schwarz, K. J . Heterocycl. Chem. 1985, 22, 669-
671.
(15) Shilcrat, S. C.; Hill, D. T.; Bender, P. E.; Griswold, D. E.;
Bauers, P. W.; Eggleston, D. S.; Lantos, I.; Pridgen, L. N. J . Heterocycl.
Chem. 1991, 28, 1181-1187.
(16) Laufer, S.; Wagner, G.; Kotschenreuther, D.; Albrecht, W. J .
Med. Chem. Submitted for publication.
(5) Laufer, S.; Striegel, H.-G.; Wagner, G. J . Med. Chem. 2002, 45,
4695-4705.
(6) J ackson, P. F.; Bullington, J . L. Curr. Top. Med. Chem. 2002, 2,
1011-1020.
10.1021/jo026619w CCC: $25.00 © 2003 American Chemical Society
Published on Web 04/25/2003
J . Org. Chem. 2003, 68, 4527-4530
4527