Journal of the American Chemical Society
COMMUNICATION
alkoxo parts of the substrate ester into the product amide with
liberation of H2. The reaction results in high turnover numbers,
up to 2 orders of magnitude higher than those reported for the
few catalytic ester amidation reactions. Both primary and sec-
ondary amines can be utilized.15
’ ASSOCIATED CONTENT
S
Supporting Information. Experimental procedures and
b
spectral data of the products. This material is available free of
’ AUTHOR INFORMATION
Corresponding Author
’ ACKNOWLEDGMENT
This research was supported by the European Research
Council under the FP7 framework (ERC No 246837), by the
Israel Science Foundation, by the MINERVA Foundation, and
by the Kimmel Center for Molecular design. D.M. is the holder of
the Israel Matz Professorial Chair of Organic Chemistry.
Figure 2. Plausible mechanism for the ester amidation reaction.
corresponding amide in 98% yield. These reactions did not lead to
any alcohol as waste product.
Interestingly, the dearomatized PNP complexes 2a, 2b, analo-
gous to complex 1 except for not having a “hemilabile” amine
arm, did not catalyze the amidation reaction. Thus, heating a
solution of pentyl pentanoate, piperidine, and 2 or 3 in toluene
under reflux for 24 h resulted in no reaction. This indicates that
the hemilabile amine arm is essential for ester amidation catalysis.
The reactions were also studied without a solvent. Thus,
heating the solutions containing pentyl pentanoate, piperidine,
and RuPNN complex 1 at 135 °C resulted in only 52% conver-
sion.
Although at present we do not have sufficient mechanistic
data, a plausible catalytic cycle for the ester amidation is
presented in Figure 2. This mechanism accounts for the striking
observation that, while 1 is an excellent catalyst, the seemingly
similar complexes 2a, 2b are catalytically inert. We propose that
N-H activation of the dearomatized complex 1 forms the
aromatized coordinatively saturated species A, as we have pre-
viously observed with complex 2b.12c Dissociation of the hemi-
labile amine arm and coordination of the ester forms inter-
mediate B. This is difficult with the PNP complexes 2a, 2b under the
reaction conditions, and hence they do not catalyze this reaction.
Intramolecular nucleophilic attack by the amido ligand at the
carbonyl group of the ester results in formation of the amide and
generation of the alkoxy intermediate C. β-H elimination generates
the Ru dihydride complex D, bearing a coordinated aldehyde.
Nucleophilic attack of the amine on the aldehyde followed by
liberation of H2 (via proton-hydride interaction) gives intermediate
E, which upon β-H elimination forms the trans dihydride inter-
mediate F, with liberation of a second molecule of the amide.
Dihydrogen loss from intermediate F regenerates catalyst 1. Based
on this mechanism, one cycle accounts for the generation of two
amide molecules and two H2 molecules, with no intermediacy of
free alcohol.
’ REFERENCES
(1) (a) Larock, R. C. Comprehensive Organic Transformations, 2nd
ed.; Wiley-VCH: New York, 1999. (b) Smith, M. B. Compendium of
Organic Synthetic Methods; Wiley: New York, 2001; Vol. 9, pp 100-116.
(2) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G. R.;
Leazer, J. L, Jr.; Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman, B. A.;
Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411.
(3) (a) Basha, A.; Lipton, M.; Weinreb, S. M. Tetrahedron Lett. 1977,
18, 4171. (b) Wang, W.-B.; Roskamp, E. J. J. Org. Chem. 1992, 57, 6101.
(c) Williams, J. M.; Jobson, R. B.; Yasuda, N.; Marchesini, G.; Dolling,
U.-H.; Grabowski, E. J. J. Tetrahedron Lett. 1995, 36, 5461. (d) Shimizu,
T.; Osako, K.; Nakata, T. Tetrahedron Lett. 1997, 38, 2685. (e) Varma,
R. S.; Naicker, K. P. Tetrahedron Lett. 1999, 40, 6177and references
therein. (f) Kurosawa, W.; Kan, T.; Fukuyama, T. J. Am. Chem. Soc. 2003,
125, 8112. (g) Direct reaction of activated 2-hydroxyamines with esters
at elevated temperatures to form ethanolamides: D’Alelio, G. F.;
Emmet Reid, E. J. Am. Chem. Soc. 1937, 59, 111.(h) Amidation of amines
with esters under microwave irradiation at 200 °C: Ferroud, C.; Godart, M.;
Ung, S.; Borderies, H.; Guy, A. Tetrahedron Lett. 2008, 49, 3004.
(4) (a) Ishihara, K.; Kuroki, Y.; Hanaki, N.; Ohara, S.; Yamamoto, H.
J. Am. Chem. Soc. 1996, 118, 1569. (b) Kuroki, Y.; Ishihara, K.; Hanaki,
N.; Ohara, S.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1998, 71, 1221.
(c) Porta, F.; Pizzotti, M.; Crotti, C.; Cenini, S. Gazz. Chim. Ital. 1988,
118, 475.
(5) Han, C.; Lee, J. P.; Lobkovsky, E.; Porco, J. A., Jr. J. Am. Chem.
Soc. 2005, 127, 10039.
(6) (a) Eldred, S. E.; Stone, D. A.; Gellman, S. H.; Stahl, S. S. J. Am.
Chem. Soc. 2003, 125, 3422. (b) Hoerter, J. M.; Otte, K. M.; Gellman,
S. H.; Cui, Q.; Stahl, S. S. J. Am. Chem. Soc. 2008, 130. (c) Stephenson,
N. A.; Zhu, J.; Gellman, S. H.; Stahl, S. S. J. Am. Chem. Soc. 2009, 131,
10003.
(7) Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007,
317, 790.
(8) (a) Nordstrøm, L. U.; Vogt, H.; Madsen, R. J. Am. Chem. Soc.
2008, 130, 17672. (b) Zweifel, T.; Naubron, J. V.; Grutzmacher, H.
Angew. Chem., Int. Ed. 2009, 48, 559. (c) Watson, A. J. A.; Maxwell, A. C.;
Williams, J. M. J. Org. Lett. 2009, 11, 2667. (d) Ghosh, S. C.; Muthaiah,
S.; Zhang, Y.; Xu, X.; Hong, S. H. Adv. Synth. Catal. 2009, 351, 2643.
(e) Shimizu, K.; Ohshima, K.; Satsuma, A. Chem.;Eur. J. 2009, 15,
9977. (f) Zhang, Y.; Chen, C.; Ghosh, S. C.; Li, Y.; Hong, S. H.
In summary, acylation of amines using esters as the acylating
agent is efficiently catalyzed by the dearomatized complex 1
under neutral conditions without any waste generation. The use
of symmetrical esters results in incorporation of both the acyl and
1684
dx.doi.org/10.1021/ja109944n |J. Am. Chem. Soc. 2011, 133, 1682–1685