Desymmetrisation of Cyclopentadienylsilane by Asymmetric Cyclopropanation
([PhMe2Si]ϩ, 100). HRMS (EI) C17H22O2Si: calcd. 286.13891;
FULL PAPER
[3c]
Ito; T. Katsuki, Synlett 1993, 638Ϫ640.
T. Uchida; R. Irie;
T. Katsuki, Synlett 1999, 1793Ϫ1795. [3d] T. Uchida; R. Irie; T.
found: 286.13800.
[3e]
Katsuki, Synlett 1999, 1163Ϫ1165.
Catal. 2002, 344, 131Ϫ147.
T. Katsuki, Adv. Synth.
Ethyl 4-Hydroxybicyclo[3.1.0]hex-2-ene-6-carboxylate (12): A 70%
suspension of mCPBA (300 mg, 1.2 mmol) was added, at 0 °C, to a
suspension of silane 7a (290 mg, 1.0 mmol) and NaHCO3 (100 mg,
1.2 mmol) in CH2Cl2 (10 mL). The reaction was stirred at 0 °C for
1 h then allowed to warm to room temperature. After 6 h at room
temperature, the mixture was diluted with diethyl ether, washed
with a 20% solution of NaOH, dried over MgSO4 and concentrated
in vacuo. The resulting crude mixture was then diluted with CH2Cl2
and amberlite IR-120 (200 mg) was added to the solution. After
12 h at room temperature the mixture was filtered, concentrated
in vacuo and the resulting white solid was purified by silica gel
chromatography (petroleum ether/EtOAc, 90:10 Ǟ 80:20) to give
12 as a colourless oil (70 mg, 41%). 1H NMR (CDCl3): δ ϭ
6.20Ϫ6.18 (m, 1 H, ϭCH), 5.70Ϫ5.67 (m, 1 H, ϭCH), 4.60Ϫ4.50
(m, 1 H, CHOH), 4.12 (q, J ϭ 7 Hz, 2 H, OCH2CH3), 2.53Ϫ2.33
(m, 3 H), 1.39Ϫ1.13 (m, 3 H) ppm. Other spectroscopic data were
in good agreement with those reported in the literature.[16]
[4] [4a]
H. Fritschi; U. Letenegger; A. Pfaltz, Helv. Chim. Acta
[4b]
1988, 71, 1553Ϫ1565.
D. A. Evans; K. A. Woerpel; M. M.
Hinman; M. M. Foul, J. Am. Chem. Soc. 1991, 113, 726Ϫ728.
[4c]
R. E. Lowenthal; S. Masamune, Tetrahedron Lett. 1991,
32, 7373Ϫ7376.
[5a] H. Nishiyama; Y. Itoh; H. Matsumoto; S.-B. Park; K. Itoh,
[5]
[5b]
J. Am. Chem. Soc. 1994, 116, 2223Ϫ2224.
H. Nishiyama;
Y. Itoh; Y. Sugawara; H. Matsumoto; K. Aoki; K. Itoh, Bull.
Chem. Soc. Jpn. 1995, 68, 1247Ϫ1262. [5c] For the use of related
bis(pyrazolyl)pyridines, see: D. L. Christenson; C. J. Tokar; W.
B. Tolman, Organometallics 1995, 14, 2148Ϫ2150.
[6]
[7]
The moderate overall yield over the two steps is due to the
formation of several isomers in the silylation step (5 Ǟ 6)
which do not react in the second step.
It is noteworthy that attempts to perform this asymmetric
cyclopropanation using Doyle’s chiral Rh2(MEPY)4 led to no
enantioselectivity: M. P. Doyle, M. A. McKervey, T. Ye in
‘‘Modern Catalytic Methods for Organic Synthesis with Diazo
Compounds’’, John Wiley & Sons, New York, 1998.
S. L. Schreiber, T. S. Schreiber, D. B. Smith, J. Am. Chem. Soc.
1987, 109, 1525Ϫ1529.
[8]
Ethyl 4-Oxobicyclo[3.1.0]hex-2-ene-6-carboxylate (13): A solution
of DMSO (65 µL, 0.92 mmol) in CH2Cl2 (1 mL) was added, at
Ϫ60 °C, to a solution of oxalyl chloride (39 µL, 0.46 mmol) in
anhydrous CH2Cl2 (1 mL). After 10 minutes, a solution of the alco-
hol 12 (70 mg, 0.41 mmol) in dry CH2Cl2 (0.5 mL) was added drop-
wise at Ϫ60 °C and the mixture was stirred for 15 minutes. NEt3
(0.3 mL, 2.1 mmol) was then added to the solution. The reaction
mixture was stirred for 5 minutes at Ϫ60 °C, then allowed to warm
to room temperature and water (2 mL) was added. After 10 mi-
nutes, the organic layer was decanted then washed successively with
water, a 1% solution of HCl, a 5% solution of Na2CO3, water, dried
over MgSO4 and the solvents were concentrated in vacuo. The res-
idue was purified by gel chromatography (petroleum ether/EtOAc,
95:5) to give 13 as a white solid (62 mg, 90%). M.p. 97Ϫ99 °C. IR
(KBr): ν˜max ϭ 3070 cmϪ1, 2950, 1715, 1695, 1469, 1265, 1177, 876,
[9] [9a]
T.-L. Ho, ‘‘Symmetry: A Basis for Synthesis Design’’, John
Wiley & Sons, New York, 1995. [9b] M. C. Willis, J. Chem. Soc.,
Perkin Trans. 1 1999, 1765Ϫ1784.
I. Fleming, J. Dunogues, R. Smithers, Org. React. 1989, 37,
57Ϫ575.
[10]
[11]
`
During copper()- and rhodium()-mediated cyclopropana-
tions, decomposition of ethyl diazoacetate produces various
amount of diethyl fumarate and maleate along with the cyclo-
propane. These were absent in our experiment when using a
1:1 10a/CuI ratio.
[12] [12a]
C. Provent; S. Hewage; G. Brand; G. Bernardinelli; L. J.
Charboniere; A. F. Williams, Angew. Chem. Int. Ed. Engl. 1997,
36, 1287Ϫ1289. [12b] S. Rüttimann; C. Piguet; G. Bernardinelli;
B. Bocquet; A. F. Williams, J. Am. Chem. Soc. 1992, 114,
4230Ϫ4237.
[12c]
C. Piguet; G. Bernardinelli; G. Hopfgartner,
1
854, 818. H NMR (CDCl3): δ ϭ 7.61 [dd, J ϭ 5.7 Hz, 2.6 Hz, 1
Chem. Rev. 1997, 97, 2005Ϫ2062.
[13] [13a]
H, C(O)CHϭCH], 5.74 [d, J ϭ 5.7 Hz, 1 H, C(O)CHϭ], 4.15 (q,
J ϭ 7 Hz, 2 H, OCH2CH3), 2.96 (dt, J ϭ 4.8 Hz, 2.6 Hz, 1 H),
2.65Ϫ2.59 (m, 1 H), 2.27 (t, J ϭ 2.6 Hz, 1 H), 1.26 (t, J ϭ 7 Hz, 3
H, OCH2CH3) ppm. 13C NMR (CDCl3): δ ϭ 203.4 (CϭO), 168.0
(COOCH2CH3), 159.7 [C(O)CHϭCH), 129.7 [C(O)CHϭ), 61.4
(OCH2CH3), 45.9, 30.1, 29.0, 14.2 ppm. [α]2D0 ϭ Ϫ 135 (c ϭ 1,
MeOH) [ref.[16]: [α]2D0 ϭ Ϫ 255 (c ϭ 1, MeOH)]. Other spectroscopic
data were in good agreement with those reported in the literat-
ure.[16]
H. B. Kagan; C. Girard, Angew. Chem. Int. Ed. 1998, 37,
2922Ϫ2959. [13b] K. Mikami; M. Terada; T. Korenaga; Y. Mats-
umoto; M. Ueki; R. Angelaud, Angew. Chem. Int. Ed. 2000,
39, 3532Ϫ3556.
[14]
[15]
C.-X. Zhao; M. O. Duffey; S. J. Taylor; J. P. Morken, Org. Lett.
2001, 3, 1829Ϫ1831.
The relative configuration of the allylic alcohol 12 was assumed
to be cis as shown, resulting from an epoxidation which oc-
curred anti relative to the silicon group.[10]
[16] [16a]
[16b]
E. D. Moher, Tetrahedron Lett. 1996, 37, 8637Ϫ8640.
C. Dominguez; J. Ezquerra; L. Prieto; M. Espada; C. Pedregal,
Tetrahedron: Asymmetry 1997, 8, 511Ϫ514.
T. Rasmussen; J. F. Jensen; N. Ostergaard; D. Tanner; T. Zi-
egler; P.-O. Norrby, Chem. Eur. J. 2002, 8, 177Ϫ184.
Various Hammett studies and calculations on the mechanism
of copper-catalysed cyclopropanation have shown that the pu-
tative copper carbenoid species is electrophilic in nature.[17]
[17]
[18]
Acknowledgments
We thank the Region Aquitaine and the CNRS (COST-D12 pro-
gram) for financial support. We are also indebted to Dr. I. Pianet
for NMR experiments.
Similar conclusions were reached with copper-catalysed inser-
[18a]
tion of diazo ester into SiϪH bonds, see:
Y. Landais; L.
[1] [1a]
R. Angelaud, Y. Landais, J. Org. Chem. 1996, 61,
Parra-Rapado; D. Planchenault; V. Weber, Tetrahedron Lett.
[1b]
[18b]
5202Ϫ5203.
1997, 38, 8841Ϫ8844.
R. Angelaud, Y. Landais, Tetrahedron Lett.
1997, 38, 229Ϫ232.
L. A. Dakin; P. C. Ong; J. S. Panek;
[1c]
R. Angelaud, O. Babot, T. Charvat,
R. J. Staples; P. Stavropoulos, Organometallics 2000, 19,
Y. Landais, J. Org. Chem. 1999, 64, 9613Ϫ9624.
2896Ϫ2908.
[2] [2a]
[19]
Y. Landais, L. Parra-Rapado, Eur. J. Org. Chem. 2000, 2,
J. B. Lambert, Tetrahedron 1990, 46, 2677Ϫ2689 and references
[2b]
401Ϫ418.
R. Angelaud, Y. Landais, L. Parra-Rapado, Tet-
cited therein.
rahedron Lett. 1997, 38, 8845Ϫ8848.
Received October 8, 2002
[O02554]
[3] [3a]
[3b]
T. Aratani, Pure Appl. Chem. 1985, 57, 1839Ϫ1844.
K.
Eur. J. Org. Chem. 2003, 1069Ϫ1073
1073