Page 5 of 6
Chemical Science
Please do not adjust margins
Journal Name
ARTICLE
Acknowledgements
DOI: 10.1039/C9SC02759A
Angew. Chem. Int. Ed., 2019, 58, 5832–5844; h) J. Wang and G.
Dong, 2019, 10.1021/acs.chemrev.9b00079; For selected
recent works, see: i) Y. Yamamoto, T. Murayama, J. Jiang, T.
Yasui and M. Shibuya, Chem. Sci., 2018, 9, 1191–1199; j) Z.-S
Liu, G. Qian, Q. Gao, P. Wang, H.-G. Cheng, Q. Wei, Q. Liu and
Q. Zhou. ACS Catalysis., 2018, 8, 4783–4788; k) R. Li and G.
Dong, Angew. Chem. Int. Ed., 2018, 57, 1697 –1701; l) Q. Zhao,
W. C. Fu and F. Y. Kwong, Angew. Chem. Int. Ed., 2018, 57,
3381–3385; m) H.-G. Cheng, C. Wu, H. Chen, R. Chen, G. Qian,
Z. Geng, Q. Wei, Y. Xia, J. Zhang, Y. Zhang and Q. Zhou, Angew.
Chem. Int. Ed., 2018, 57, 3444–3448; n) L. Bai, J. Liu, W. Hu, K.
Li, Y. Wang and X. Luan, Angew. Chem. Int. Ed., 2018, 57, 5151
–5155; o) G. Qian, M. Bai, S. Gao, H. Chen, S. Zhou, H.-G. Cheng,
W. Yan and Q. Zhou, Angew. Chem. Int. Ed., 2018, 57, 10980–
10984; p) C. Wu, H.-G. Cheng, R. Chen, H. Chen, Z.-S. Liu, J.
Zhang, Y. Zhang, Y. Zhu, Z. Geng and Q. Zhou. Org. Chem. Front.,
2018, 5, 2533–2536; q) F. Liu, Z. Dong, J. Wang, and G. Dong,
Angew. Chem. Int. Ed., 2019, 58, 2144–2148; r) Q. Gao, Z.-S. Liu,
Y. Hua, L. Li, H.-G. Cheng, H. Cong and Q. Zhou. Chem. Comm.
a) G. Shi, C. Shao, X. Ma, Y. Gu and Y. Zhang, ACS Catal., 2018,
8, 3775–3779; b) S. Chen, Z.-S. Liu, T. Yang, Y. Hua, Z. Zhou, H.-
G. Cheng and Q. Zhou, Angew. Chem. Int. Ed., 2018, 57, 7161–
7165; c) P. Wang, S. Chen, Z. Zhou, H.-G. Cheng and Q. Zhou,
Org. Lett., 2019, 21, 3323–3327.
Very recently, the Dong group reported an elegant ortho
acylation of aryl boroxines via palladium/norbornene
cooperative catalysis, see: R. Li, F. Liu and G. Dong, Chem.,
2019, 5, 929–939. In their research, the pinacol arylborates are
unreactive substrates. They also reported the ortho amination
of aryl boroxines (six examples), which required triphenyl
phosphite as the ligand, CsI and benzoquinone (BQ) as the
additives.
We are grateful to the National Natural Science Foundation of
China (Grants 21602161, 21871213, 21801193), the National
“1000-Youth Talents Plan”, start-up funding from Wuhan
University, and the China Postdoctoral Science Foundation
(2016M602339, 2018M642894) for financial support. We thank
Prof. W.-B. Liu (WHU) for sharing the instruments and Ms Q.
Gao for checking the experiments. We thank Prof. D. Ma (SIOC)
for sharing the oxalamide ligands.
Notes and references
1
a) E. Vitaku, D. T. Smith and J. T. Njardarson, J. Med. Chem.,
2014, 57, 10257–10274; b) S. Basoglu, M. Yolal, A. Demirbas, H.
Bektas, R. Abbasoglu and N. Demirbas, Turk. J. Chem., 2012, 36,
37–53; c) A. Inoue, S. Miki, M. Seto, T. Kikuchi, S. Morita, H.
Ueda, Y. Misu and Y. Nakata, Eur. J. Pharm., 1997, 321, 105–
111; d) K. Prasad, K. Srinivas, A. Pallavi and K. Mukkanti, Drug.
Test. Analysis., 2018, 10, 212–221; e) B. Barlaam, R. Ducray, C.
Lambert-van der Brempt, P. Ple, C. Bardelle, N. Brooks, T.
Coleman, D. Cross, J. G. Kettle and J. Read, Bioorg. Med. Chem.
Lett., 2011, 21, 2207–2211.
For aniline synthesis through copper catalyzed C‒N bond
formation, see: a) S. V. Ley and A. W. Thomas, Angew. Chem.
Int. Ed., 2003, 42, 5400–5449; b) C. Sambiagio, S. P. Marsden,
A. J. Blacker and P. C. McGowan, Chem. Soc. Rev., 2014, 43,
3525–3550; c) S. Bhunia, G. G. Pawar, S. V. Kumar, Y. Jiang and
D. Ma, Angew. Chem. Int. Ed., 2017, 56, 16136–16179. For
anilines synthesis through nickel catalyzed C‒N bond formation,
see: d) M. Marín, R. J. Rama and M. C. Nicasio, Chem. Rec., 2016,
16, 1819–1832. For anilines synthesis through cobalt catalyzed
C-N bond formation, see: e) M. Usman, Z.-H. Ren, Y.-Y. Wang
and Z.-H. Guan, Synthesis, 2017, 49, 1419–1443; f) Y.-H. Chen,
S. Grassl and P. Knochel, Angew. Chem. Int. Ed., 2018, 57, 1108–
1111. For anilines synthesis through transition metal-free C‒N
bond formation, see: g) C. Zhu and J. R. Falck, Adv. Synth. Catal.,
2014, 356, 2395–2410.
7
8
2
9
For palladium(IV)-involved aminations, see: a) J. A. Jordan-Hore,
C. C. Johansson, M. Gulias, E. M. Beck and M. J. Gaunt, J. Am.
Chem. Soc., 2008, 130, 16184–16186; b) T. Mei, X. Wang and J.-
Q. Yu, J. Am. Chem. Soc., 2009, 131, 10806–10807. However,
another mechanism involving direct nucleophilic substitution
of the amination reagent 2 by arylpalladium(II) species (II) can’t
be excluded, see related references: c) A. M. Berman and J. S.
Johnson, J. Am. Chem. Soc., 2004, 126, 5680–5681; d) T. J.
Barker and E. R. Jarvo, J. Am. Chem. Soc., 2009, 131, 15598–
15599; e) G. Cheng, T.-J. Li and J.-Q. Yu, J. Am. Chem. Soc., 2015,
137, 10950–10953.
3
4
a) F. Paul, J. Patt and J. F. Hartwig, J. Am. Chem. Soc., 1994, 116,
5969–5970; b) A. S. Guram and S. L. Buchwald, J. Am. Chem.
Soc., 1994, 116, 7901–7902; c) J. F. Hartwig, Acc. Chem. Res.,
2008, 41, 1534–1544; d) D. S. Surry and S. L. Buchwald, Angew.
Chem. Int. Ed., 2008, 47, 6338–6361.
For seminal work, see: a) Z. Dong and G. Dong, J. Am. Chem.
Soc., 2013, 135, 18350–18353. For selected following studies,
see: b) Z.-Y. Chen, C.-Q. Ye, H. Zhu, X.-P. Zeng and J.-J. Yuan,
Chem. - Eur. J., 2014, 20, 4237–4241; c) P.-X. Zhou, Y.-Y. Ye, J.-
W. Ma, L. Zheng, Q. Tang, Y.-F. Qiu, B. Song, Z.-H. Qiu, P.-F. Xu
and Y.-M. Liang, J. Org. Chem., 2014, 79, 6627–6633; d) F. Sun
and Z. Gu, Org. Lett., 2015, 17, 2222–2225; e) H. Shi, D. J.
Babinski and T. Ritter, J. Am. Chem. Soc., 2015, 137, 3775–
3778; f) B. Luo, J.-M. Gao and M. Lautens, Org. Lett., 2016, 18,
4166–4169; g) P. Wang, G.-C. Li, P. Jain, M. E. Farmer, J. He, P.-X.
Shen and J.-Q. Yu, J. Am. Chem. Soc., 2016, 138, 14092–14099;
h) W. C. Fu, B. Zheng, Q. Zhao, W. T. K. Chan and F. Y. Kwong,
Org. Lett., 2017, 19, 4335–4338; i) L. Fan, J. Liu, L. Bai, Y. Wang
and X. Luan, Angew. Chem. Int. Ed., 2017, 56, 14257–14261.
Z. Dong, G. Lu, J. Wang, P. Liu and G. Dong, J. Am. Chem. Soc.,
2018, 140, 8551–8562.
For seminal work, see: a) M. Catellani, F. Frignani and A.
Rangoni, Angew. Chem., Int. Ed. Engl., 1997, 36, 119–122. For
selected reviews, see: b) M. Catellani, Top. Organomet. Chem.,
2005, 14, 21–53; c) M. Catellani, E. Motti and N. Della Ca’, Acc.
Chem. Res., 2008, 41, 1512–1522; d) J. Ye and M. Lautens, Nat.
Chem., 2015, 7, 863–870; e) N. Della Ca’, M. Fontana, E. Motti
and M. Catellani, Acc. Chem. Res., 2016, 49, 1389–1400; f) Z.-S.
10 For selected Catellani-type studies involving redox-neutral
protonation as the termination step, see: a) L. Jiao and T. Bach,
J. Am. Chem. Soc., 2011, 133, 12990–12993; b) L. Jiao, E.
Herdtweck and T. Bach, J. Am. Chem. Soc., 2012, 134, 14563–
14572; c) X.-C. Wang, W. Gong, L.-Z. Fang, R.-Y. Zhu, S. Li, K. M.
Engle and J.-Q. Yu, Nature, 2015, 519, 334–338; d) Z. Dong, J.
Wang and G. Dong, J. Am. Chem. Soc., 2015, 137, 5887–5890;
e) H. Zhang, H.-Y. Wang, Y. Luo, C. Chen, Y. Cao, P. Chen, Y.-L.
Guo, Y. Lan and G. Liu, ACS Catal., 2018, 8, 2173–2180. For a
review about protodepalladation, see: f) M. L. O’Duill and K. M.
Engle, Synthesis., 2018, 50, 4699–4714.
11 The oxidation state of the palladium complexes may be always
kept at two throughout the catalytic cycle. For selected
examples, see: a) Y.-H. Zhang, B.-F. Shi and J.-Q. Yu, Angew.
Chem. Int. Ed., 2009, 48, 6097–6100; and ref.9f.
12 For mechanism studies on Catellani-type reactions, see: a) M.
Catellani and B. E. Mann, J. Organomet. Chem., 1990, 390, 251–
255; b) G. Bocelli, M. Catellani and S. Ghelli, J. Organomet.
Chem., 1993, 458, C12–C15; c) B. Martín-Matute, C. Mateo, D.
J. Cárdenas and A. M. Echavarren, Chem. Eur. J., 2001, 7, 2341–
2348; d) D. J. Cárdenas, B. MartínMatute and A. M. Echavarren,
J. Am. Chem. Soc., 2006, 128, 5033–5040; e) G. Maestri, E.
5
6
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins