MoO3 NANOPARTICLES IN EPOXIDE RING OPENING
1405
10. (a) Anderson, G.; Magneli, A. On the crystal structure of molybdenum
trioxide. Acta Chem. Scand. 1950, 4, 793–797. (b) 10 McCarron, E. M.
β-MoO3: a metastable analogue of WO3. J. Chem. Soc., Chem. Commun.
1986, 4, 336–338. (c) 10 McCarron, E. M.; Thomas, D. M.; Calabrese, J. C.
29. Azizi, N.; Saidi, M. R. Highly efficient one-pot three-component Man-
nich reaction in water catalyzed by heteropoly acids. Org. Lett. 2005, 7,
3649–3651.
30. Olofsson, B.; Somfai, P. Divergent synthesis of D-erythro-Sphingosine,
L-threo-sphingosine and their regioisomers. J. Org. Chem. 2002, 67,
8574–8583.
Hexagonal molybdates: crystal structure of (Na.2H2O)Mo5.33[H4.5]0.67O18.
Inorg. Chem. 1987, 26, 370–373.
11. Bose, A. C.; Shimizu, Y.; Mariotti, D.; Sasaki, T.; Terashima, K.; Koshizaki,
N. Flow rate effect on the structure and morphology of molybdenum oxide
nanoparticles deposited by atmospheric-pressure microplasma processing.
Nanotechnology 2006, 17, 5976–5982.
31. Sundararajan, G.; Vijayakrishn, K.; Vargheseb, B. Synthesis of β-amino
alcohols by regioselective ring opening of arylepoxides with anilines
catalyzed by cobaltous chloride. Tetrahedron Lett. 2004, 45, 8253–
8256.
12. Du, K.; Fu, W.; Wei, R.; Yang, H.; Xu, J.; Chang, L.; Yu, Q.; Zou,
G. Ultrasonic-assisted synthesis of highly dispersed MoO3 nanospheres
using 3-mercaptopropyltrimethoxysilane. Ultrason. Sonochem. 2008, 15,
233–238.
13. Sawicka, K.M.; Prasad, A.K.; Gouma, P.I. Metal oxide nanowires for use
in chemical sensing applications. Sens. Lett. 2005, 3, 31–35.
14. Zach, M.P.; Ng, K.H.; Penner, R.M. Molybdenum nanowires by electrode-
position. Science, 2000, 290, 2120–2123.
15. Niederberger, M.; Krumeich, F.; Muhr, H. J.; Mu¨ller, M.; Nesper, R. Syn-
thesis and characterization of novel nanoscopic Molybdenum oxide fibres.
J. Mater. Chem. 2001, 11, 1941–1945.
16. Zhou, J.; Xu, N.S.; Deng, S.Z.; Chen, J.; She, J.C.; Wang, Z. L. Growth and
field-emission property of tungsten oxide nanotip arrays. Adv. Mater. 2003,
15, 1835–1840.
17. Ashraf, S.; Blackman, Ch. S.; Hyett, G.; Parkin, I. P. Aerosol as-
sisted chemical vapour deposition of MoO3 and MoO2 thin films on
glass from molybdenum polyoxometallate precursors; thermophoresis and
gas phase nanoparticle formation. J. Mater. Chem. 2006, 16, 3575–
3582.
18. Siciliano, T.; Tepore, A.; Filippo, E.; Micocci, G.; Tepore, M. Effect of
thermal annealing time on optical and structural properties of TeO2 thin
films. Mater. Chem. Phys. 2009, 114, 687–691.
32. (a) Golebiowski, A.; Jurczak, J. α-Amino-β-hydroxy acids in the to-
tal synthesis of amino sugars. Synlett 1993, 39, 241–245. (b) 32 Casir-
aghi, G.; Zanardi, F.; Rassu, G.; Spanu, P. Stereoselective approaches
to bioactive carbohydrates and alkaloids - With a focus on recent syn-
theses drawing from the chiral pool. Chem. Rev. 1995, 95, 1677–
1716.
33. Ruediger, E.; Martel, A.; Meanwell, N.; Solomon, C.; Turmel, B. Novel
3’-deoxy analogs of the anti-HBV agent entecavir: synthesis of enan-
tiomers from a single chiral epoxide. Tetrahedron Lett. 2004, 45, 739–
742.
34. Wu, M. H.; Jacobsen, E. N. An efficient formal synthesis of balanol via
the asymmetric epoxide ring opening reaction. Tetrahedron Lett. 1997, 38,
1693–1696.
35. Lindsay, K. B.; Pyne, S. G. Synthesis of (+)-(1R, 2S, 9S, 9aR)-octahydro-
1H-pyrrolo[1,2-a]azepine-1,2,9-triol: a potential glycosidase inhibitor.
Tetrahedron 2004, 60, 4173–4176.
36. Kamal, A.; Prasad, B. R.; Reddy, A. M.; Khan, M. N. A. Sulfamic acid
as an efficient and recyclable catalyst for the ring opening of epoxides
with amines and anilines: an easy synthesis of β-amino alcohols under
solvent-free conditions. Catal. Commun. 2007, 8, 1876–1880.
37. Vijender, M.; Kishore, P.; Narender, P.; Satyanarayana, B. Amberlist-15 as
heterogeneous reusable catalyst for regioselective ring opening of epoxides
with amines under mild conditions. J. Mol. Catal. A: Chem. 2007, 266,
290–293.
19. Yan, B.; Zheng, Z.; Zhang, J.; Gong, H.; Shen, Z.; Huang, W.; Yu, T.
Orientation controllable growth of MoO3 nanoflakes: micro-Raman, field
emission and birefringence properties. J. Phys. Chem. C 2009, 113, 20259– 38. Ollevier, T.; Lavie-Compin, G. Bismuth triflate-catalyzed mild and efficient
20263.
epoxide opening by aromatic amines under aqueous conditions. Tetrahedron
Lett. 2004, 45, 49–52.
20. Patzke, G. R.; Michailovski, A.; Krumeich, F.; Nesper, R.; Grunwaldt, J.
D.; Baiker, A. One-step synthesis of submicrometer fibers of MoO3. Chem. 39. Owen, D.; Marsden, C. D. Effect of adrenergic beta-blockade on Parkinso-
Mater. 2004, 16, 1126–1134. nian tremor. Lancet 1965, 2, 1259–1262.
21. Chen, J. S.; Cheah, Y. L.; Madhavi, S.; Lou, X. W. Fast synthesis of α- 40. Chini, M.; Crotti, P.; Macchia, F. Metal salts as new catalysts for mild
MoO3 nanorods with controlled aspect ratios and their Lithium storage
capabilities. J. Phys. Chem. C 2010, 114, 8675–8678.
and efficient aminolysis of oxiranes. Tetrahedron Lett. 1990, 31, 4661–
4664.
22. Xia, T.; Li, Q.; Liu, X.; Meng, J.; Cao, X. Morphology-controllable syn-
thesis and characterization of single-crystal molybdenum trioxide. J. Phys.
Chem. B 2006, 110, 2006–2012.
41. Azizi, N.; Saidi, M. R. Highly efficient ring opening reactions of epoxides
with deactivated aromatic amines catalyzed by heteropoly acids in water.
Tetrahedron 2007, 63, 888–891.
23. Wang, S.; Zhang, Y.; Ma, X.; Wang, W.; Li, X.; Zhang, Z.; Qian, Y. Hy-
drothermal route to single crystalline α-MoO3 nanobelts and hierarchical
structures. Solid State Commun. 2005, 136, 283–286.
24. Hassan, M. F.; Guo, Z. P.; Chen, Z.; Liu, H. K. Carbon-coated MoO2
nanobelts as anode materials for lithium-ion batteries. J. Power Sources
2010, 195, 2372–2376.
42. Sreedhar, B.; Radhika, P.; Neelima, B.; Hebalkar, N. Regioselective ring
opening of epoxides with amines using monodispersed silica nanoparticles
in water. J. Mol. C atal. A: Chem. 2007, 272, 159–163.
43. Kureshy, R. I.; Singh, S.; Khan, N. H.; Abdi, S. H. R.; Suresh, E.; Jasra,
R. V. Efficient method for ring opening of epoxides with amines by NaY
zeolite under solvent-free conditions. J. Mol. Catal. A: Chem. 2007, 264,
162–169.
25. Phuruangrate, A.; Ham, D. J.; Thongtem, S.; Lee, J. S. Electrochemi-
cal hydrogen evolution over MoO3 nanowires produced by microwave- 44. Chakraborti, A. K.; Kondaskar, A.; Rudrawar, S. Scope and limitations
assisted hydrothermal reaction. Electrochem. Commun. 2009, 11, 1740–
of montmorillonite K 10 catalysed opening of epoxide rings by amines.
1743.
Tetrahedron 2004, 60, 9085–9091.
26. Lou, X. W.; Zeng, H. C. Hydrothermal synthesis of α-MoO3 nanorods 45. Heravi, M. M.; Bakhtiari, K.; Alinejhad, H.; Saeedi, M.; Malakooti, R.
via acidification of ammonium-heptamolybdate-tetrahydrate. Chem. Mater.
2002, 14, 4781–4789.
MCM-41 catalyzed efficient regioselective synthesis of β-aminoalcohol
under solvent-free conditions. Chin. J. Chem. 2010, 28, 269–272.
27. Zheng, L.; Xu, Y.; Jin, D.; Xie, Y. Novel metastable hexagonal MoO3
nanobelts: synthesis, photochromic, and electrochromic properties. Chem.
Mater. 2009, 21, 5681–5690.
28. Zakharova, G. S.; Ta¨schner, C.; Volkov, V. L.; Hellmann, L.; Klingeler, R.;
Leonhardt, A.; Buchner, B. MoO3−δ nanorods: synthesis, characterization
and magnetic properties. Solid State Sci. 2007, 9, 1028–1032.
46. (a) Shivani, P. B.; Chakraborti, A. K. Zinc(II) perchlorate hexahydrate cat-
alyzed opening of epoxide ring by amines: applications to synthesis of
(RS)/(R)-propranolols and (RS)/(R)/(S)-Naftopidils. J. Org. Chem. 2007,
72, 3713–3722. (b) Kumar, S. R.; Leelavathi, P. Cadmium chloride-
catalyzed regioselective opening of oxiranes with aromatic amines - an
improved protocol for the synthesis of 2-amino alcohols. Can. J. Chem.