Journal of the American Chemical Society
Communication
(4) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual catalysis strategies in
photochemical synthesis. Chem. Rev. 2016, 116, 10035−10074.
(5) Jeffrey, J. L.; Terrett, J. A.; MacMillan, D. W. C. O−H hydrogen
bonding promotes H-atom transfer from α C−H bonds for C-
alkylation of alcohols. Science 2015, 349, 1532−1536.
(17) (a) Boultadakis-Arapinis, M.; Lemoine, P.; Turcaud, S.;
Micouin, L.; Lecourt, T. Rh(II) carbene-promoted activation of the
anomeric C−H bond of carbohydrates: a stereospecific entry toward
α- and β-ketopyranosides. J. Am. Chem. Soc. 2010, 132, 15477−
15479. (b) Boultadakis-Arapinis, M.; Lescot, C.; Micouin, L.; Lecourt,
T. Rh(II) carbene-mediated synthesis of methyl α- and β-ketopyrano-
sides: preparation of carbene precursors, quaternization of the
anomeric position, and ring opening of γ-lactones. J. Carbohydr.
(6) Roberts, B. P. Polarity-reversal catalysis of hydrogen-atom
abstraction reactions: concepts and applications in organic chemistry.
Chem. Soc. Rev. 1999, 28, 25−35.
́
Chem. 2011, 30, 587−604. (c) Mebarki, K.; Gavel, M.; Heis, F.;
(7) Twilton, J.; Christensen, M.; DiRocco, D. A.; Ruck, R. T.;
Davies, I. W.; MacMillan, D. W. C. Selective hydrogen atom
abstraction through induced bond polarization: direct α-arylation of
alcohols through photoredox, HAT and nickel catalysis. Angew. Chem.,
Int. Ed. 2018, 57, 5369−5373.
(8) Pipitone, L. M.; Carboni, G.; Sorrentino, D.; Galeotti, M.;
Salamone, M.; Bietti, M. Enhancing reactivity and site-selectivity in
hydrogen atom transfer from amino acid C−H bonds via
deprotonation. Org. Lett. 2018, 20, 808−811.
(9) (a) Ye, J.; Kalvet, I.; Schoenebeck, F.; Rovis, T. Direct α-
alkylation of primary aliphatic amines enabled by CO2 and
electrostatics. Nat. Chem. 2018, 10, 1037−1041. (b) Hu, X.-Q.;
Chen, J.-R.; Xiao, W.-J. Synergistic CO2 mediation and photocatalysis
for α-alkylation of primary aliphatic amines. Chem. 2018, 4, 2274−
2277.
Joosten, A. Y. P.; Lecourt, T. Carbene-mediated quaternization of the
anomeric position of carbohydrates: synthesis of allylic ketopyrano-
sides, access to the missing α-gluco and β-manno stereoisomers, and
preparation of quaternary 2-deoxy 2-acetamido sugars. J. Org. Chem.
2017, 82, 9030−9037.
(18) Lee, D.; Newman, S. G.; Taylor, M. S. Boron-catalyzed direct
aldol reactions of pyruvic acids. Org. Lett. 2009, 11, 5486−5489.
́
(19) Dimitrijevic, E.; Taylor, M. S. 9-Hetero-10-boraanthracene-
derived borinic acid catalysts for regioselective activation of polyols.
Chem. Sci. 2013, 4, 3298−3303.
(20) Blanksby, S. J.; Ellison, G. B. Bond dissociation energies of
organic molecules. Acc. Chem. Res. 2003, 36, 255−263.
(21) Escoubet, S.; Gastaldi, G.; Vanthuyne, N.; Gil, G.; Siri, D.;
Bertrand, M. P. Thiyl radical mediated racemization of nonactivated
aliphatic amines. J. Org. Chem. 2006, 71, 7288−7892.
(10) (a) Lee, D.; Taylor, M. S. Borinic acid-catalyzed regioselective
acylation of carbohydrate derivatives. J. Am. Chem. Soc. 2011, 133,
3724−3727. (b) Lee, D.; Williamson, C. L.; Chan, L.; Taylor, M. S.
Regioselective, borinic acid-catalyzed monoacylation, sulfonylation
and alkylation of diols and carbohydrates: expansion of scope and
mechanistic studies. J. Am. Chem. Soc. 2012, 134, 8260−8267.
(c) D’Angelo, K. A.; Taylor, M. S. Borinic acid catalyzed stereo- and
regioselective couplings of glycosyl methanesulfonates. J. Am. Chem.
Soc. 2016, 138, 11058−11066. (d) Tanveer, K.; Jarrah, K.; Taylor, M.
S. Borinic acid catalyzed, regioselective chloroacylations and
chlorosulfonylations of 2,3-epoxy alcohols. Org. Lett. 2015, 17,
3482−3485. (e) Taylor, M. S. Catalysis based on reversible covalent
interactions of organoboron compounds. Acc. Chem. Res. 2015, 48,
295−305.
(11) (a) Bajaj, S. O.; Sharif, E. U.; Akhmedov, N. G.; O’Doherty, G.
A. De novo asymmetric synthesis of the mezzettiaside family of
natural products via the iterative use of a dual B-/Pd-catalyzed
glycosylation. Chem. Sci. 2014, 5, 2230−2234. (b) Li, R.-Z.; Tang, H.;
Yang, K. R.; Wan, L.-Q.; Zhang, X.; Liu, J.; Fu, Z.; Niu, D.
Enantioselective propargylation of polyols and desymmetrization of
meso 1,2-diols by copper/borinic acid dual catalysis. Angew. Chem., Int.
Ed. 2017, 56, 7213−7217. (c) Pawliczek, M.; Hashimoto, T.;
Maruoka, K. Alkylative kinetic resolution of vicinal diols under
phase-transfer conditions: a chiral ammonium borinate catalysis.
Chem. Sci. 2018, 9, 1231−1235.
(22) Liu, W.-L.; Bordwell, F. G. Gas-phase and solution-phase
hemolytic bond dissociation energies of H−N+ bonds in the
conjugate acids of nitrogen bases. J. Org. Chem. 1996, 61, 4778−4783.
(23) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping
function in dispersion corrected density functional theory. J. Comput.
Chem. 2011, 32, 1456−1465.
(24) Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence,
triple zeta valence and quadruple zeta valence quality for H to Rn:
design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7,
3297−3305.
(25) Frisch, J. J. et al., Gaussian 16, Rev. B.01; Gaussian, Inc.:
Wallingford, CT, 2016.
(26) Malatesta, V.; Ingold, K. U. Kinetic applications of electron
paramagnetic resonance spectroscopy. 36. Stereoselectronic effects in
hydrogen atom abstraction from ethers. J. Am. Chem. Soc. 1981, 103,
609−614.
(27) (a) Stubbe, J.; van der Donk, W. A. Ribonucleotide reductases:
radical enzymes with suicidal tendencies. Chem. Biol. 1995, 2, 793−
801. (b) Stubbe, J.; van der Donk, W. A. Protein radicals in enzyme
catalysis. Chem. Rev. 1998, 98, 705−762. (c) Giese, B. Stereoselective
syntheses with carbohydrate-derived radicals. Pure Appl. Chem. 1988,
60, 1655−1658. (d) Beckwith, A. L. J.; Crich, D.; Duggan, P. J.; Yao,
Q. Chemistry of β-(acyloxy)alkyl and β-(phosphatoxy)alkyl radicals
and related species: radical and radical ionic migrations and
fragmentations of carbon−oxygen bonds. Chem. Rev. 1997, 97,
́
́
3273−3312. (e) Perez-Martín, I.; Suarez, E. Radicals and Carbohy-
drates. In Encyclopedia of Radicals in Chemistry, Biology and Materials;
Chatgilialoglu, C., Studer, A., Eds.; John Wiley and Sons, Ltd.:
Hoboken, NJ, 2012; pp 1131−1174.
(12) (a) Tsuda, Y.; Hanajima, M.; Matsuhira, N.; Okuno, Y.;
Kanemitsu, K. Regioselective mono-oxidation of non-protected
carbohydrates by brominolysis of the tin intermediates. Chem.
Pharm. Bull. 1989, 37, 2344−2350. (b) Muramatsu, W. Catalytic
and regioselective oxidation of carbohydrates to synthesize keto-
sugars under mild conditions. Org. Lett. 2014, 16, 4846−4849.
(13) William, J. M.; Kuriyama, M.; Onomura, O. Boronic acid-
catalyzed selective oxidation of 1,2-diols to α-hydroxy ketones in
water. Adv. Synth. Catal. 2014, 356, 934−940.
(14) Wan, I. C.; Witte, M. D.; Minnaard, A. J. Site-selective carbon−
carbon bond formation in unprotected monosaccharides using
photoredox catalysis. Chem. Commun. 2017, 53, 4926−4929.
(15) Lowry, M. S.; Goldsmith, J. I.; Slinker, J. D.; Rohl, R.; Pascal, R.
A., Jr.; Malliaras, G. G.; Bernhard, S. Single-layer electroluminescent
devices and photoinduced hydrogen production from an ionic
iridium(III) complex. Chem. Mater. 2005, 17, 5712−5719.
(16) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.;
MacMillan, D. W. C. Merging photoredox with nickel catalysis:
coupling of α-carbonyl sp3 carbons with aryl halides. Science 2014,
345, 437−440.
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX