Scheme 1. Synthesis of Fragment 3 via Myers’ Iterative
Alkylation Processa
Figure 2. Retrosynthetic analysis of borrelidin.
this natural product. The combination of unusual chemical
architecture and diverse biological profile has prompted the
development of synthetic routes toward borrelidin11 that have
recently culminated to the first total synthesis of 1 by Morken
and collaborators.12 In continuation of our synthetic effort,13
we present herein an enantioselective synthesis of the C1-
C12 fragment (2) of borrelidin.
A plausible scenario for the synthesis of 1 could rely upon
the union of two fragments across the macrolactone func-
tionality and the C12-C13 double bond. On the basis of
this approach, ketonitrile 2, carrying six of the nine total
stereocenters of borrelidin, was selected as a key synthetic
intermediate (Figure 2). Further disconnection across the
C11-C12 bond and C2-C3 bond of 2 results in fragment
3, which is highlighted by the presence of the skipped
methylene motif.14 Among the different strategies for con-
struction of this type of scaffold,15 the most applicable to
a Reagents and conditions: (a) 1.1 equiv of TiCl4, 1.1 equiv of
iPr2EtN, 2.0 equiv of BnOCH2Cl (6), CH2Cl2, 0 °C, 6 h, 85%; (b)
2.2 equiv of LiBH4, 2.2 equiv of H2O, THF, 0 °C, 1 h, 80%; (c)
1.2 equiv of PPh3, 1.35 equiv of I2, 1.5 equiv of imid, 2 h, 0 °C,
96% for 7, 95% for 11, 97% for 13; (d) 2.1 equiv of (+) 8, 4.0
equiv of LDA, 12 equiv of LiCl, THF, 0 °C, 18 h, 97%; (e) 4.0
equiv of LiH2N‚BH3, -78 to 0 °C, 3 h, 90% for 10, 95% for 12;
(f) 2.1 equiv of (-) 8, 4.0 equiv of LDA, 12.2 equiv of LiCl, THF,
0 °C, 18 h, 89%; (g) 5.0 equiv of nBu4NOH, tBuOH/H2O 3/1,
reflux, 24 h, 84%.
our case appeared to be Myers’ alkylation.16,17 This iterative
approach could ensure the construction of the chiral centers
with a high degree of enantio- and diastereoselectivity.18 On
the basis of these considerations, compound 4 was projected
to be the starting material for our synthetic effort (Figure
2).
Our synthesis of the C1-C12 fragment of borrelidin is
delineated in Schemes 1 and 3 and departs from readily
available oxazolidinone 5.19 Stereoselective alkylation of 5
(5) Montgomery, R. R.; Palmarozza, R. E.; Beck, D. S.; Ngo, E.; Joiner,
K. A.; Malawista, S. E. Inflammation 2000, 24, 277-288. Montgomery,
R. R.; Nathanson, M. H.; Malawista, S. E. J. Immunol. 1993, 150, 909-
915.
(6) Wakabayashi, T.; Kageyama, R.; Naruse, N.; Tsukahara, N.; Funahashi,
Y.; Kitoh K.; Watanabe Y. J. Antibiot. 1997, 50, 671-676.
(7) Tsunchiya, E.; Yukawa, M.; Miyakawa, T.; Kimura, K.; Takahashi,
H. J. Antibiot. 2001, 54, 1, 84-90. Poralla, K. In Mechanism of Action of
Antimicrobial and Antitumor Agents; Corcoran, J. W., Hahn, F. E., Eds.;
Springer: Berlin, 1975; pp 365-388.
(8) Tsuchiya, E.; Yukawa, M.; Miyakawa, T.; Kimura, K.; Takahashi,
H. J. Antibiot. 2001, 54, 84-90.
(9) Anderton, K.; Rickards, R. W. Nature 1965, 498, 269. Kuo, M. S.;
Yurek, D. A.; Kloosterman, D. A. J. Antibiot. 1989, 42, 1006-1007. Keller-
Schierlein, W. Experientia 1966, 22, 355-359. Keller-Schierlein, W. HelV.
Chim. Acta 1967, 50, 731-753.
(10) The structure and absolute stereochemistry of 1 have been deter-
mined from a single-crystal X-ray analysis. See: Anderson, B. F.; Herlt,
A. J.; Rickards, R. W.; Robertson, G. B. Aust. J. Chem. 1989, 42, 717-
730.
(11) Haddad, N.; Grishko, M.; Brik, A. Tetrahedron Lett. 1997, 38,
6075-6078. Haddad, N.; Brik., A.; Grishko, M. Tetrahedron Lett. 1997,
38, 6079-6082. Zhao, C.-X.; Duffey, M. O.; Taylor, S. J.; Morken, J. P.
Org. Lett. 2001, 3, 1829-1831.
(12) Duffey, M. O.; LeTiran, A.; Morken, J. P. J. Am. Chem. Soc. 2003,
125, 1458-1459.
(13) Xiang, A. X. Dissertation Thesis, University of California, San
Diego, 2000.
(15) For selected examples of related syntheses, see: Evans, D. A.; Ennis,
M. D.; Mathre, D. J. J. Am. Chem. Soc. 1982, 104, 1737-1742. Evans, D.
A.; Dow, R. L.; Shih, T. L.; Takacs, J. M.; Zahler, R. J. Am. Chem. Soc.
1990, 112, 5290-5312. Calter, M. A.; Liao, W.; Struss, J. A. J. Org. Chem.
2001, 66, 7500-7504. Abiko, A.; Masamune, S. Tetrahedron Lett. 1996,
37, 1081-1084. Birkbeck, A. A.; Enders, D. Tetrahedron Lett. 1998, 39,
7823-7826. Oppolzer, W.; Moretti, R.; Thomi, S. Tetrahedron Lett. 1989,
30, 5603-5606. Masamune, S.; Abiko, A.; Moriya, O.; Filla, S. A., Angew.
Chem., Int. Ed. Engl. 1995, 34, 793-795. Hanessian, S.; Murray, P. J. Can.
J. Chem. 1986, 64, 2231-2234.
(16) Myers, A. G.; Yang, B. H.; Chen, H.; Gleason, J. L. J. Am. Chem.
Soc. 1994, 116, 9361-9362. Myers, A. G.; Yang, B. H.; Chen, H.;
McKinstry, L.; Kopecky, D. J.; Gleason, J. L. J. Am. Chem. Soc. 1997,
119, 6496-6511.
(14) The skipped methylene motif constitutes a common structural
element in many natural products of polyketide origins including ionomycin,
rapamycin, and related macrolides. For a recent monograph on macrolides,
see: Macrolide Antibiotics Chemistry, Biology, and Practice, 2nd ed.;
Omura, S., Ed.; Academic Press: London, 2002; pp 1-637.
(17) Use of other chiral auxiliaries in conjunction with â-branched iodides
are low yielding due to the reduced reactivity of the electrophile. This,
however, is not an issue for the pseudoephedrine-based alkylation reported
by Myers and collaborators (ref 16). See also: Myers, A. G.; Yang, B. H.;
Chen, H.; Kopecky, D. J. Synlett 1997, 457-459.
1618
Org. Lett., Vol. 5, No. 10, 2003