6884
K. Odlo et al. / Bioorg. Med. Chem. 18 (2010) 6874–6885
8. (a) Pettit, G. R.; Temple, C., Jr.; Narayanan, V. L.; Varma, R.; Simpson, M. J.; Boyd,
M. R.; Rener, G. A.; Bansal, N. Anti-Cancer Drug Des. 1995, 10, 299; (b) Siemann,
D. W.; Chaplin, D. J.; Walicke, P. A. Expert Opin. Invest. Drugs 2009, 18, 189.
9. (a) Peifer, C.; Stoiber, T.; Unger, E.; Totzke, F.; Schächtele, C.; Marmé, D.; Brenk,
R.; Klebe, G.; Schollmeyer, D.; Dannhardt, G. J. Med. Chem. 2006, 49, 1271; (b)
Pirali, T.; Busacca, S.; Beltrami, L.; Imovilli, D.; Pagliai, F.; Miglio, G.; Massarotti,
A.; Verotta, L.; Tron, G. C.; Sorba, G.; Genazzani, A. A. J. Med. Chem. 2006, 49,
5372; (c) Quintin, J.; Roullier, C.; Thoret, S.; Lewin, G. Tetrahedron 2006, 62,
4038; (d) Sun, C.-M.; Lin, L.-G.; Yu, H.-J.; Cheng, C.-Y.; Tsai, Y.-C.; Chu, C.-W.;
Din, Y.-H.; Chau, Y.-P.; Don, M.-J. Bioorg. Med. Chem. Lett. 2007, 17, 1078; (e)
Tsyganov, D. V.; Yakubov, A. P.; Konyushkin, L. D.; Firgang, S. I.; Semenov, V. V.
Russ. Chem. Bull. 2007, 56, 2460; (f) Xue, N.; Yang, X.; Wu, R.; Chen, J.; He, Q.;
Yang, B.; Lu, X.; Hu, Y. Bioorg. Med. Chem. 2008, 16, 2550.
10. (a) Cafici, L.; Pirali, T.; Condorelli, F.; Del Grosso, E.; Massarotti, A.; Sorba, G.;
Canonico, P. L.; Tron, G. C.; Genazzani, A. A. J. Comb. Chem. 2008, 10, 732; (b)
Demko, Z.; Borella, C.; Chen, S.; Sun, L. U.S. Patent 2007238699 A1, 2007.; (c)
Ohsumi, K.; Hatanaka, T.; Fujita, K.; Nakagawa, R.; Fukuda, Y.; Nihei, Y.; Suga,
Y.; Morinaga, Y.; Akiyama, Y.; Tsuji, T. Bioorg. Med. Chem. Lett. 1998, 8, 3153; (d)
Pagliai, F.; Pirali, T.; Del Grosso, E.; Di Brisco, R.; Tron, G. C.; Sorba, G.;
Genazzani, A. A. J. Med. Chem. 2006, 49, 467; (e) Pati, H. N.; Wicks, M.; Holt, H. L.
J.; LeBlanc, R.; Weisbruch, P.; Forrest, L.; Lee, M. Heterocycl. Commun. 2005, 11,
117; (f) Zhang, Q.; Peng, Y.; Wang, X. I.; Keenan, S. M.; Arora, S.; Welsh, W. J. J.
Med. Chem. 2007, 50, 749.
11. Odlo, K.; Hentzen, J.; Fournier dit Chabert, J.; Ducki, S.; Gani, O. A. B. S. M.; Sylte,
I.; Skrede, M.; Flørenes, V. A.; Hansen, T. V. Bioorg. Med. Chem. 2008, 16, 4829.
12. The MTT assay does not distinguish between growth inhibition and cell
death.
13. (a) Getahun, Z.; Jurd, L.; Chu, P. S.; Lin, C. M.; Hamel, E. J. Med. Chem.
1992, 35, 1058; (b) Kaffy, J.; Pontikis, R.; Florent, J.-C.; Monneret, C. Org.
Biomol. Chem. 2005, 3, 2657; (c) LeBlanc, R.; Dickson, J.; Brown, T.;
Stewart, M.; Pati, H. N.; VanDerveer, D.; Arman, H.; Harris, J.; Pennington,
W., ; Holt, H. L., Jr.; Lee, M. Bioorg. Med. Chem. 2005, 13, 6025; (d) Ducki,
S. Anti-Cancer Agents Med. Chem. 2009, 9, 336; (e) Ty, N.; Kaffy, J.; Arrault,
A.; Thoret, S.; Pontikis, R.; Dubois, J.; Morin-Allory, L.; Florent, J.-C. Bioorg.
Med. Chem. Lett. 2009, 19, 1318.
cell growth by 50% (IC50 value), determined by graphical means
as percentage of the control growth.
4.11.2. Inhibition of tubulin assembly
The method applied was that described by Lawrence and
coworkers.27 Tubulin was isolated from porcine brain and stored
at ꢀ78 °C. Samples were prepared directly in a 96-well microtitre
testplate that was preincubated at 4 °C in the fridge for 30 min
and contained Mes buffer [128
0.5 mM MgCl2, and distilled water, pH 6.6)], GTP (20
Mes buffer), tubulin (50 l, 11 mg/mL in Mes buffer), and the can-
didate drug (20 l, Csample in DMSO). The tubulin/drug samples
were immediately placed in a 96-well plate reader, alongside blank
samples containing Mes buffer (198 l) and the candidate drug
(10 l, same concentration). The absorbance (k 350 nm) was re-
l
l
(0.1 M Mes, 1 mM EGTA,
ll, 5 mM in
l
l
l
l
corded at ambient temperature for a period of 60 min, and the re-
sults were compared to untreated controls to evaluate the relative
degree of change in optical density. The results enabled the calcu-
lation of the drug dose required to inhibit the assembly of tubulin
by 50% (IC50 value), determined by graphical means as percentage
of the control assembly.
4.12. Molecular modeling
Three triazoles, 5e, 6e, and 11, were modeled by the Internal
Coordinate Mechanics (ICM39,40) v.3.5-ln program package. The
ligands were geometry-optimized and assigned partial atomic
charges according to the MMFF94 force field.41 The X-ray crystallo-
14. Pettit, G. R.; Grealish, M. P.; Jung, M. K.; Hamel, E.; Pettit, R. K.; Chapuis, J.-C.;
Schmidt, J. M. J. Med. Chem. 2002, 45, 2534.
15. (a) Colvin, E. W.; Hamill, B. J. J. Chem. Soc., Chem. Commun. 1973, 151; (b) Miwa,
K.; Aoyama, T.; Shioiri, T. Synlett 1994, 107.
16. Naganawa, A.; Saito, T.; Nagao, Y.; Egashira, H.; Iwahashi, M.; Kambe, T.;
Koketsu, M.; Yamamoto, H.; Kobayashi, M.; Maruyama, T.; Ohuchida, S.; Nakai,
H.; Kondo, K.; Toda, M. Bioorg. Med. Chem. 2006, 14, 5562.
17. Thompson, A. S.; Humphrey, G. R.; DeMarco, A. M.; Mathre, D. J.; Grabowski, E.
J. J. J. Org. Chem. 1993, 58, 5886.
graphic structures of a
- and b-tubulin (PDB entry 1SA0;28 chain A
and chain B, respectively) in complex with guanosine-50-triphos-
phate (GTP) were loaded into ICM, and hydrogen atoms were
added. ECEPP/342 atom charges were assigned, followed by energy
minimization to relieve atomic clashes. A grid map was calculated
that included the ligand binding site of 1SA0. The grid size was
kept similar to our previous docking of triazole analog 4e.11 The tri-
18. Tao, C.-Z.; Cui, X.; Li, J.; Liu, A.-X.; Liu, L.; Guo, Q.-X. Tetrahedron Lett. 2007, 48,
3525.
19. Lombardo, L. Tetrahedron Lett. 1984, 25, 227.
azole analogs were docked as flexible-ligands on the rigid
a,b-
20. (a) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int.
Ed. 2002, 41, 2596; (b) Tornøe, C. W.; Christensen, C.; Meldal, M. J. Org. Chem.
2002, 67, 3057.
21. (a) Akimova, G. S.; Chistokletov, V. N.; Petrov, A. A. Zh. Org. Khim. 1967, 3, 968;
(b) Krasin´ ski, A.; Fokin, V. V.; Sharpless, K. B. Org. Lett. 2004, 6, 1237.
22. Zhang, L.; Chen, X.; Xue, P.; Sun, H. H. Y.; Williams, I. D.; Sharpless, K. B.; Fokin,
V. V.; Jia, G. J. Am. Chem. Soc. 2005, 127, 15998.
tubulin conformation. The docked ligand conformation that exhib-
ited the most favorable docking energy was further refined using a
flexible-ligand, flexible-receptor method in ICM.43 The free binding
energy of the refined tubulin-ligand complex was calculated to
predict the contributions of different subunits in binding the differ-
ent triazole analogs.
23. Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
24. Yoo, S.-E.; Lee, S.-H. Synlett 1990, 419.
25. (a) Edmondson, J. M.; Armstrong, L. S.; Martinez, A. O. J. Tissue Cult. Methods
1988, 11, 15; (b) Lawrence, N. J.; Patterson, R. P.; Ooi, L.-L.; Cook, D.; Ducki, S.
Bioorg. Med. Chem. Lett. 2006, 16, 5844.
Acknowledgments
26. (a) Cushman, M.; Nagarathnam, D.; Gopal, D.; Chakraborti, A. K.; Lin, C. M.;
Hamel, E. J. Med. Chem. 1991, 34, 2579; (b) Nam, N.-H.; Kim, Y.; You, Y.-J.; Hong,
D.-H.; Kim, H.-M.; Ahn, B.-Z. Bioorg. Med. Chem. Lett. 2001, 11, 3073.
27. Lawrence, N. J.; McGown, A. T.; Ducki, S.; Hadfield, J. A. Anti-Cancer Drug Des.
2000, 15, 135.
Financial support to K.O. from the School of Pharmacy, Univer-
sity of Oslo, is gratefully appreciated. Financial support to J.F. from
the Conseil Régional d’Auvergne, FEDER and Oséo is greatly
appreciated.
28. Ravelli, R. B. G.; Gigant, B.; Curmi, P. A.; Jourdain, I.; Lachkar, S.; Sobel, A.;
Knossow, M. Nature 2004, 428, 198.
References and notes
29. Nguyen, T. L.; McGrath, C.; Hermone, A. R.; Burnett, J. C.; Zaharevitz, D. W.; Day,
B. W.; Wipf, P.; Hamel, E.; Gussio, R. J. Med. Chem. 2005, 48, 6107.
30. (a) La Regina, G.; Sarkar, T.; Bai, R.; Edler, M. C.; Saletti, R.; Coluccia, A.;
Piscitelli, F.; Minelli, L.; Gatti, V.; Mazzoccoli, C.; Palermo, V.; Mazzoni, C.;
Falcone, C.; Scovassi, A. I.; Giansanti, V.; Campiglia, P.; Porta, A.; Maresca,
B.; Hamel, E.; Brancale, A.; Novellino, E.; Silvestri, R. J. Med. Chem. 2009,
52, 7512; (b) Tripathi, A.; Durrant, D.; Lee, R. M.; Baruchello, R.;
Romagnoli, R.; Simoni, D.; Kellogg, G. E. J. Enzyme Inhib. Med. Chem.
2009, 24, 1237.
1. Boulikas, T.; Alevizopoulos, N.; Ladopoulou, A.; Belimezi, M.; Pantos, A.;
Christofis, P.; Roberts, M. In The Cancer Clock; Missailidis, S., Ed.; John Wiley &
Sons Ltd: West Sussex, 2007; pp 173–218.
2. Giavazzi, R.; Bonezzi, K.; Taraboletti, G. In The Role of Microtubules in Cell
Biology, Neurobiology, and Oncology; Fojo, T., Ed.; Humana Press: Totowa, 2008;
pp 519–530.
3. Kanthou, C.; Tozer, G. M. Int. J. Exp. Pathol. 2009, 90, 284.
4. Pettit, G. R.; Singh, S. B.; Hamel, E.; Lin, C. M.; Alberts, D. S.; Garcia-Kendall, D.
Experientia 1989, 45, 209.
31. Compounds 8d, 18a, and 18c are reported herein since these have been
prepared by an alternative recent method.
32. (a) Canceill, J.; Collet, A. Nouv. J. Chim. 1986, 10, 17; (b) Naik, R. G.; Wheeler, T.
S. J. Chem. Soc. 1938, 1780.
33. (a) Cook, J. W.; Graham, W.; Cohen, A.; Lapsley, R. W.; Lawrence, C. A. J. Chem.
Soc. 1944, 322; (b) Lee, T.-H.; Chiou, J.-L.; Lee, C.-K.; Kuo, Y.-H. J. Chin. Chem. Soc.
2005, 52, 833.
34. Pettit, G. R.; Singh, S. B.; Cragg, G. M. J. Org. Chem. 1985, 50, 3404.
35. (a) Curtius, T. J. Prakt. Chem. 1912, 85, 137; (b) Sirion, U.; Kim, H. J.; Lee,
J. H.; Seo, J. W.; Lee, B. S.; Lee, S. J.; Oh, S. J.; Chi, D. Y. Tetrahedron Lett.
2007, 48, 3953.
5. Lin, C. M.; Ho, H. H.; Pettit, G. R.; Hamel, E. Biochemistry 1989, 28, 6984.
6. (a) Grosios, K.; Holwell, S. E.; McGown, A. T.; Pettit, G. R.; Bibby, M. C. Br. J.
Cancer 1999, 81, 1318; (b) El-Zayat, A. A. E.; Degen, D.; Drabek, S.; Clark, G. M.;
Pettit, G. R.; Von Hoff, D. D. Anti-Cancer Drugs 1993, 4, 19.
7. (a) Chaudhary, A.; Pandeya, S. N.; Kumar, P.; Sharma, P. P.; Gupta, S.; Soni, N.;
Verma, K. K.; Bhardwaj, G. Mini-Rev. Med. Chem. 2007, 7, 1186; (b) Tron, G. C.;
Pirali, T.; Sorba, G.; Pagliai, F.; Busacca, S.; Genazzani, A. A. J. Med. Chem. 2006,
49, 3033; (c) Hsieh, H. P.; Liou, J. P.; Mahindroo, N. Curr. Pharm. Des. 2005, 11,
1655.