Please do not adjust margins
ChemComm
Page 4 of 5
COMMUNICATION
Journal Name
5
6
In conclusion, we have developed a mild and versatile protocol
for the fluoroalkylation of alkenes including synthetically
interesting trifluoromethylations. Using terminal olefins
including a variety of functionalized ones, the corresponding
fluoroalkylated alkenes are obtained in good yields and E/Z-
selectivity. Advantageously, the presented nickel catalyst is
comparatively inexpensive as well as air- and moisture-stable.
Mechanistic investigations reveal that this transformation
mainly proceeds via fast formation of the 1,2-adduct, which
subsequently undergoes slow base-catalyzed elimination. EPR
measurements also provide evidence for the importance of
radical intermediates.
9322; (b) Y. Macé, E. Magnier, Eur. J. DOOrgI:.10C.h1e0m39./D200C1C20, 62605122D,
2479; (c) F. Toulgoat, T. Billard, Chem 2017, 2, 327.
(a) L. He, K. Natte, J. Rabeah, C. Taeschler, H. Neumann, A.
Bruckner, M. Beller, Angew. Chem. Int. Ed. 2015, 54, 4320; (b) K.
Natte, R. V. Jagadeesh, L. He, J. Rabeah, J. Chen, C. Taeschler, S.
Ellinger, F. Zaragoza, H. Neumann, A. Brückner, M. Beller, Angew.
Chem. Int. Ed. 2016, 55, 2782.
7
F. Ye, S. Zhang, Z. Wei, F. Weniger, A. Spannenberg, C. Taeschler,
S. Ellinger, H. Jiao, H. Neumann, M. Beller, Eur. J. Org. Chem. 2020,
2020, 70.
J. Liu, J. Yang, F. Ferretti, R. Jackstell, M. Beller, Angew. Chem. Int.
Ed. 2019, 58, 4690.
(a) T. Xu, C. W. Cheung, X. Hu, Angew. Chem. Int. Ed. 2014, 53,
4910; (b) I. Behrends, S. Bahr, C. Czekelius, Chem. Eur. J. 2016, 22,
17177; (c) T. Yajima, M. Ikegami, Eur. J. Org. Chem. 2017, 2017,
2126; (d) L. Fu, S. Zhou, X. Wan, P. Chen, G. Liu, J. Am. Chem. Soc.
2018, 140, 10965; (e) L. Helmecke, M. Spittler, K. Baumgarten, C.
Czekelius, Org. Lett. 2019, 21, 7823.
8
9
We are grateful for the financial support from the State
Mecklenburg-Western Pomerania, the federal German Ministry
BMBF and LONZA.
10 (a) T. Taguchi, O. Kitagawa, T. Morikawa, T. Nishiwaki, H. Uehara,
H. Endo, Y. Kobayashi, Tetrahedron Lett. 1986, 27, 6103; (b) T.
Yokomatsu, K. Suemune, T. Murano, S. Shibuya, J. Org. Chem.
1996, 61, 7207; (c) K. Sato, R. Kawata, F. Ama, M. Omote, A. Ando,
I. Kumadaki, Chem. Pharm. Bull. 1999, 47, 1013; (d) P. S. Fier, J.
F. Hartwig, J. Am. Chem. Soc. 2012, 134, 5524; (e) G. K. Prakash,
S. K. Ganesh, J. P. Jones, A. Kulkarni, K. Masood, J. K. Swabeck, G.
A. Olah, Angew. Chem. Int. Ed. 2012, 51, 12090; (f) K. Aikawa, Y.
Nakamura, Y. Yokota, W. Toya, K. Mikami, Chem. Eur. J. 2015, 21,
96.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1
For some selected reviews on fluorine chemistry, see: (a) W. R.
Dolbier, Chem. Rev. 1996, 96, 1557; (b) T. Umemoto, J. Fluorine
Chem. 2000, 105, 211; (c) B. E. Smart, J. Fluorine Chem. 2001, 109, 11 L. Chu, F.-L. Qing, Org. Lett. 2010, 12, 5060.
3; (d) K. L. Kirk, Org. Process Res. Dev. 2008, 12, 305; (e) C. Ni, J. 12 M. K. Schwaebe, J. R. McCarthy, J. P. Whitten, Tetrahedron Lett.
Hu, Chem. Soc. Rev. 2016, 45, 5441; (f) Y. Zhu, J. Han, J. Wang, N.
2000, 41, 791.
Shibata, M. Sodeoka, V. A. Soloshonok, J. A. S. Coelho, F. D. Toste, 13 (a) Z.-Y. Long, Q.-Y. Chen, J. Org. Chem. 1999, 64, 4775; (b) W.
Chem. Rev. 2018, 118, 3887.
For some selected recent advances on fluorine chemistry, see:
Ghattas, C. R. Hess, G. Iacazio, R. Hardré, J. P. Klinman, M. Réglier,
J. Org. Chem. 2006, 71, 8618.
2
(a) J. W. Beatty, J. J. Douglas, R. Miller, R. C. McAtee, K. P. Cole, 14 (a) C. Yu, N. Iqbal, S. Park, E. J. Cho, Chem. Commun. 2014, 50,
C. R. J. Stephenson, Chem 2016, 1, 456; (b) J. Xie, T. Zhang, F.
Chen, N. Mehrkens, F. Rominger, M. Rudolph, A. S. K. Hashmi,
Angew. Chem. Int. Ed. 2016, 55, 2934; (c) Y. Wang, J. Wang, G. X.
Li, G. He, G. Chen, Org. Lett. 2017, 19, 1442; (d) J. Lin, F. Wang, X.
12884; (b) D. P. Tiwari, S. Dabral, J. Wen, J. Wiesenthal, S.
Terhorst, C. Bolm, Org. Lett. 2017, 19, 4295; (c) J. Moon, Y. K.
Moon, D. D. Park, S. Choi, Y. You, E. J. Cho, J. Org. Chem. 2019,
84, 12925.
Dong, W. He, Y. Yuan, S. Chen, X. Liu, Nat. Comm. 2017, 8, 14841; 15 (a) N. Surapanich, C. Kuhakarn, M. Pohmakotr, V. Reutrakul, Eur.
(e) Y. Ouyang, X. H. Xu, F. L. Qing, Angew. Chem. Int. Ed. 2018, 57,
6926; (f) T. Shirai, M. Kanai, Y. Kuninobu, Org. Lett. 2018, 20,
1593; (g) E. Torti, S. Protti, M. Fagnoni, Chem. Commun. 2018, 54, 16 (a) S. Pisiewicz, D. Formentiꢀ, A.-E. Surkus, M.-M. Pohl, J. Radnik,
J. Org. Chem. 2012, 2012, 5943; (b) Z. Feng, Q. Q. Min, H. Y. Zhao,
J. W. Gu, X. Zhang, Angew. Chem. Int. Ed. 2015, 54, 1270.
4144; (h) W. Zhang, Z. Zou, Y. Wang, Y. Wang, Y. Liang, Z. Wu, Y.
Zheng, Y. Pan, Angew. Chem. Int. Ed. 2019, 58, 624; (i) C. Chen, P.
M. Pfluger, P. Chen, G. Liu, Angew. Chem. Int. Ed. 2019, 58, 2392;
(j) S. Zhang, F. Weniger, C. R. Kreyenschulte, H. Lund, S. Bartling,
H. Neumann, S. Ellinger, C. Taeschler, M. Beller, Catal. Sci.
Technol. 2020, 10, 1731; (k) Y. Cheng, J. Liu, Q. Gu, Z. Yu, J. Wang,
Z. Li, J. Bian, H. Wen, X. Wang, X. Hong, X. Liu, Nat. Catal. 2020,
3, 401.
K. Junge, C. Topf, S. Bachmann, M. Scalone, M. Beller,
ChemCatChem 2016, 8, 129; (b) D. D. Beattie, T. Schareina, M.
Beller, Org. Biomol. Chem. 2017, 15, 4291; (c) P. Ryabchuk, G.
Agostini, M.-M. Pohl, H. Lund, A. Agapova, H. Junge, K. Junge, M.
Beller, Sci. Adv. 2018, 4, eaat0761; (d) J. W. Collet, B. Morel, H. C.
Lin, T. R. Roose, P. Mampuys, R. V. A. Orru, E. Ruijter, B. U. W.
Maes, Org. Lett. 2020, 22, 914.
17 For more details on this kind of nickel pre-catalyst, see: E. A.
Standley, S. J. Smith, P. Muller, T. F. Jamison, Organometallics
2014, 33, 2012.
3
4
(a) V. Bizet, R. Kowalczyk, C. Bolm, Chem. Soc. Rev. 2014, 43,
2426; (b) N. Laidaoui, M. He, D. El Abed, J.-F. Soulé, H. Doucet,
RSC Adv. 2016, 6, 62866; (c) Y. Zhou, J. Wang, Z. Gu, S. Wang, W. 18 S. Zhang, N. Rotta-Loria, F. Weniger, J. Rabeah, H. Neumann, C.
Zhu, J. L. Aceña, V. A. Soloshonok, K. Izawa, H. Liu, Chem. Rev.
Taeschler, M. Beller, Chem. Commun. 2019, 55, 6723.
2016, 116, 422; (d) C. Wiethan, W. C. Rosa, H. G. Bonacorso, M. 19 For an example on the transformation of vinylsilanes, see: B. M.
Stradiotto, Org. Biomol. Chem. 2016, 14, 2352; (e) R. Boyaala, R.
Trost, M. R. Machacek, Z. T. Ball, Org. Lett. 2003, 5, 1895.
Touzani, T. Roisnel, V. Dorcet, E. Caytan, D. Jacquemin, J. Boixel, 20 J. Rabeah, J. Radnik, V. Briois, D. Maschmeyer, G. Stochniol, S.
V. Guerchais, H. Doucet, J.-F. Soulé, ACS Catal. 2018, 9, 1320.
(a) S. Sergeyev, A. K. Yadav, P. Franck, J. Michiels, P. Lewi, J.
Peitz, H. Reeker, C. La Fontaine and A. Brückner, ACS Catal. 2016,
6, 8224.
Heeres, G. Vanham, K. K. Arien, C. M. L. Vande Velde, H. De 21 (a) T. Inatomi, Y. Fukahori, Y. Yamada, R. Ishikawa, S. Kanegawa,
Winter, B. U. W. Maes, J. Med. Chem. 2016, 59, 1854; (b) H. G.
Bonacorso, G. M. Dal Forno, C. Wiethan, A. Ketzer, N. Zanatta, C.
P. Frizzo, M. A. P. Martins, M. Stradiotto, RSC Adv. 2017, 7, 43957;
(c) L. Fang, J. Zhou, J. Wang, J. Sun, Q. Fang, Macromol. Chem.
Phys. 2018, 219, 1800252; (d) C. M. Tressler, N. J. Zondlo, ACS
Chem. Biol. 2020, 15, 1096.
Y. Koga, K. Matsubara, Catal. Sci. Technol. 2019, 9, 1784; (b) D. K.
Pandey, S. B. Ankade, A. Ali, C. P. Vinod, B. Punji, Chem. Sci. 2019,
10, 9493; (c) N. X. Gu, P. H. Oyala, J. C. Peters, J. Am. Chem. Soc.
2020, 142, 7827.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins