C O M M U N I C A T I O N S
CGC . Cp′2; entries 5, 4, and 2). Preliminary kinetic studies11
reveal linear dependence of reaction time on [substrate] up to ∼75%
conversion, consistent with zero-order kinetic dependence on
[substrate] (turnover-limiting intramolecular alkene insertion).
Good to excellent diastereoselectivities are observed in formation
of a 2,5-trans-disubstituted pyrrolidine (entries 13,14) and a 2,6-
cis-disubstituted piperidine (entries 15, 16) from the corresponding
methyl-substituted dienes.18 Note that entry 15 demonstrates a
concise, efficient synthesis of (()-pinidine19 with excellent stereo-
controls for both 2,6-cis substitution (cis:trans ) 178:1) and trans-
alkene geometry (14a:b:c ) 94:1:5). The high selectivities can be
rationalized by assuming chairlike transition states in which methyl
and diene units occupy thermodynamically more stable equatorial
positions (Figure 1). Preliminary studies of enantioselective cy-
and Mr. R. L. Paddock for help with chiral HPLC measurements,
and Prof. F. E. McDonald and Dr. M. R. Douglass for helpful
suggestions.
Supporting Information Available: Detailed synthetic procedures
and analytical data for new compounds and kinetic plots (PDF). This
References
(1) For recent reviews of catalytic hydroamination, see: Mu¨ller, T. E.; Beller,
M. Chem. ReV. 1998, 98, 675-703.
(2) For recent examples of hydroamination catalyzed by transition metals,
see: (a) Johnson, J. S.; Bergman, R. G. J. Am. Chem. Soc. 2001, 123,
2923-2924. (b) Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2000,
122, 9546-9547. (c) Haak, E.; Siebeneicher, H.; Doye, S. Org. Lett. 2000,
2, 1935-1937. (d) Vasen, D.; Salzer, A.; Gerhards, F.; Gais, H.-J.;
Stu¨rmer, R.; Bieler, N. H.; Togni, A. Organometallics 2000, 19, 539-
546. (e) Mu¨ller, T. E.; Grosche, M.; Herdtweck, E.; Pleier, A.-K.; Walter,
E.; Yan, Y.-K. Organometallics 2000, 19, 170-183. (f) Burling, S.; Field,
L. D.; Messerle, B. A. Organometallics 2000, 19, 87-90.
(3) For relevant organolanthanide discussions, see: (a) Topics in Organo-
metallic Chemistry; Kobayashi, S., Ed.; Springer: Berlin, Germany, 1999;
Vol. 2. (b) Molander, G. A. Chemtracts: Org. Chem. 1998, 11, 237-
263. (c) Edelmann, F. T. Top. Curr. Chem. 1996, 179, 247-276. (d) Nolan,
S. P.; Stern, D.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 7844-7853.
(4) (a) Molander, G. A.; Dowdy, E. D.; Pack, S. K. J. Org. Chem. 2001, 66,
4344-4347. (b) Kim, Y. K.; Livinghouse, T.; Bercaw, J. E. Tetrahedron
Lett. 2001, 42, 2933-2935. (c) Tian, S.; Arredondo, V. M.; Stern, C. L.;
Marks, T. J. Organometallics 1999, 18, 2568-2570. (d) Gilbert, A. T.;
Davis, B. L.; Emge, T. J.; Broene, R. D. Organometallics 1999, 18, 2125-
2132. (e) Molander, G. A.; Dowdy, E. D. J. Org. Chem. 1998, 63, 8983-
8988. (f) Gagne´, M. R.; Stern, C. L.; Marks, T. J. J. Am Chem. Soc. 1992,
114, 275-294.
Figure 1. Plausible transition state for diastereoselective aminodiene
hydroamination/cyclization.
(5) (a) Giardello, M. A.; Conticello, V. P.; Brard, L.; Gagne´, M. R.; Marks,
T. J. J. Am. Chem. Soc. 1994, 116, 10241-10254. (b) Giardello, M. A.;
Conticello, V. P.; Brard, L.; Sabat, M.; Rheingold, A. L.; Stern, C. L.;
Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10212-10240.
clizations reveal that 3f 4a/b conversion catalyzed by C1-
symmetric (S)-Me2Si(OHF)(CpR*)SmN(TMS)2 proceeds with up
to 69% ee (Table 2, entries 2-4) while analogous 1 f 2a/b
cyclization proceeds with 23% ee (Table 2, entry 1). In contrast,
previous intramolecular aminomonoalkene hydroamination/cycliza-
tions to such piperidines exhibit far lower Nt values and
enantioselectivities;5a the present results constitute the best com-
bination of reactivity and selectivity to date.
(6) (a) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 1757-1771. (b)
Bu¨rgstein, M. R.; Berberich, H.; Roesky, P. W. Organometallics 1998,
17, 1452-1454. (c) Li, Y.; Marks, T. J. J. Am. Chem. Soc. 1996, 118,
9295-9306.
(7) (a) Arredondo, V. M.; Tian, S.; McDonald, F. E.; Marks, T. J. J. Am.
Chem. Soc. 1999, 121, 3633-3639. (b) Arredondo, V. M.; McDonald, F.
E.; Marks, T. J. Organometallics 1999, 18, 1949-1960. (c) Arredondo,
V. M.; McDonald, F. E.; Marks, T. J. J. Am. Chem. Soc. 1998, 120, 4871-
4872.
(8) Elevated reaction temperatures, large metal ionic radii/high coordinative
unsaturation, and gem-dimethyl substrate substitution are necessary for
reasonable Nt values in 1,2-disubstituted alkene hydroaminations: Ryu,
J.-S.; Marks, T. J.; McDonald, F. E. Org. Lett. 2001, 3, 3091-3094.
(9) (a) Li, Y.; Marks, T. J. Organometallics 1996, 15, 3770-3772. (b) Hong,
S.; Marks, T. J. Abstracts of Papers; communicated in part at the 221st
National Meeting of the American Chemical Society, San Diego, CA,
April 2001; American Chemical Society: Washington, DC, 2001; abstract
INOR 613.
Table 2. Enantioselective Cyclization of Aminodienesa
entry
substrate
product (ratio)
solvent
temp (°C)
% eeb (config.)c
1
2
3
4
1
3
3
3
2a/b (93:7)
4a/b (97:3)
4a/b (96:4)
4a/b (95:5)
C6D6
C6D6
C6D12
C6D12
25
25
25
0
23
63 (R)
66 (R)
69 (R)
(10) Pd-catalyzed intermolecular hydroamination of dienes by arylamines:
Lo¨ber, O.; Kawatsura, M.; Hartwig, J. F. J. Am. Chem. Soc. 2001, 123,
4366-4367.
a Conditions: 7 mol % (entries 1, 2, 3) or 20 mol % (entry 4) of
(OHF*)SmN(TMS)2 catalyst, ∼0.6 mL of solvent. b For the major isomer,
determined by chiral HPLC analysis. Measured ee values vary only weakly
with conversion. c Determined by optical rotation of the HCl salt of
hydrogenated product. See Supporting Information.
(11) See Supporting Information for full experimental details.
(12) Jeske, G.; Lauke, H.; Mauermann, H.; Swepston, P. N.; Schumann, H.;
Marks, T. J. J. Am. Chem. Soc. 1985, 107, 8091-8103.
(13) Douglass, M. R.; Ogasawara, M.; Hong, S.; Metz, M. V.; Marks, T. J.
Organometallics 2002, 21, 283-292.
(14) For discussion of functional group tolerance in organolanthanide catalysis,
see ref 3b.
(15) For cyclization of dienes 7 and 9, the product distribution is time-
dependent, ultimately favoring thermodynamic products. For conversion
9 f 10, initial formation of 10a and subsequent isomerization to 10c is
observed in situ by 1H NMR. Presumably, the doubly activated benzylic
C-H functionality in 10a is sufficiently acidic to facilitate isomerization.
(16) (a) For example, when Cp′2LaCH(TMS)2 is used as a precatalyst, Nt for
4-pentenamine cyclization is 13 h-1 (25 °C) and Nt for 5-hexenamine
cyclization is 5 h-1 (60 °C)4f vs entries 1 and 6 in Table 1. (b) When
(S)-Me2Si(OHF)(CpR*)SmN(TMS)2 is used as precatalyst, Nt for 4-pen-
tenamine cyclization is 2.6 h-1 at 25 °C.13 Compare to Table 1, entry 5.
(17) Representative eight-coordinate effective ionic radii (Å): La(III), 1.160;
Nd(III), 1.109; Sm(III), 1.079; Y(III), 1.019; Yb(III), 0.985; Lu(III), 0.977.
See: Shannon, R. D. Acta Crystallogr., Sect. A 1976, A32, 751-767.
(18) Relative stereochemistry confirmed by NOESY experiments and deriva-
tization.
In conclusion, we have demonstrated that efficient organolan-
thanide-catalyzed intramolecular hydroamination/cyclization of
amines tethered to 1,2-disubstituted alkenes is achieved by using
readily accessible conjugated aminodienes. The results include rate
enhancements due to electronic effects as well as good regio- and
diastereoselectivity. That aminodienes offer general and efficient
substrates for enantioselective hydroamination/cyclization routes to
2-substituted azacycles motivates current work with other catalysts
and conjugated substrates, and application of this methodology to
alkaloid synthesis.
(19) Kirihara, M.; Nishio, T.; Yokoyama, S.; Kakuda, H.; Momose, T.
Tetrahedron 1999, 55, 2911-2926 and references therein.
Acknowledgment. We thank NSF (CHE-0078998) for support,
Dr. Y. Wu for help with NOESY experiments, Prof. S. T. Nguyen
JA020226X
9
J. AM. CHEM. SOC. VOL. 124, NO. 27, 2002 7887