C O M M U N I C A T I O N S
the benzyne intermediates.11,20 More detailed mechanistic studies
and DFT calculations of these facile and parallel C-H bond
activation systems are currently in progress, with a view to
developing new avenues of hydrocarbon activation chemistry. The
results of these investigations will be reported in due course.
Acknowledgment. We are grateful to the Natural Sciences and
Engineering Research Council of Canada for support of this work
in the form of grants to P. L., and we thank Dr. B. O. Patrick of
this Department for collecting X-ray diffraction data. P. L. is a
Canada Council Killam Research Fellow.
Supporting Information Available: Experimental procedures and
characterization data for the new compounds described (PDF) and X-ray
crystallographic data for 7•C6H6 (CIF). This material is available free
Figure 1. ORTEP diagram of Cp*Mo(NO)(η2-C6H4)(NC5H5) (7) with 50%
probability ellipsoids. Selected bond lengths (Å) and angles (deg): Mo-
(1)-C(11) 2.124(4), Mo(1)-C(12) 2.153(4), C(11)-C(12) 1.356(6), Mo-
(1)-N(1) 1.774(4), Mo(1)-N(2) 2.223(3); Mo(1)-N(1)-O(1) 169.2(4).
References
(1) Presented in part at the 223rd National Meeting of the American Chemical
Society, Orlando, FL, April 2002, Abstract INOR 0112.
(2) (a) ActiVation and Functionalization of Alkanes; Hill, C. L., Ed.; Wiley-
Interscience: New York, 1989. (b) Shilov, A. E.; Shul’pin, G. B.
ActiVation and Catalytic Reactions of Saturated Hydrocarbons in the
Presence of Metal Complexes; Kluwer Academic: Dordrecht, The
Netherlands, 2000.
(3) For leading reviews, see: (a) Crabtree, R. H. Chem. ReV. 1985, 85, 245-
269. (b) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H.
Acc. Chem. Res. 1995, 28, 154-162. (c) Crabtree, R. H. Chem. ReV. 1995,
95, 987-1007. (d) Shilov, A. E.; Shul’pin, G. B. Chem. ReV. 1997, 97,
2879-2932. (e) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Angew. Chem.,
Int. Ed. 1998, 37, 2180-2192. (f) Crabtree, R. H. J. Chem. Soc., Dalton
Trans. 2001, 2437-2450.
(4) (a) Tran, E.; Legzdins, P. J. Am. Chem. Soc. 1997, 119, 5071-5072. (b)
Adams, C. S.; Legzdins, P.; Tran, E. J. Am. Chem. Soc. 2001, 123, 612-
624.
(5) For other examples of intermolecular C-H bond activation by metal
alkylidene complexes, see: (a) Coles, M. P.; Gibson, V. C.; Clegg, W.;
Elsegood, M. R. J.; Porrelli, P. A. J. Chem. Soc., Chem. Commun. 1996,
1963-1964. (b) van der Heijden, H.; Hessen, B. J. Chem. Soc., Chem.
Commun. 1995, 145-146. (c) Cheon, J.; Rogers, D. M.; Girolami, G. S.
J. Am. Chem. Soc. 1997, 119, 6804-6813.
(6) (a) Debad, J. D.; Legzdins, P.; Lumb, S, A.; Batchelor, R. J.; Einstein, F.
W. B. J. Am. Chem. Soc. 1995, 117, 3288-3289. (b) Legzdins, P.; Lumb,
S. A. Organometallics 1997, 16, 1825-1827. (c) Debad, J. D.; Legzdins,
P.; Lumb, S, A.; Rettig, S. J.; Batchelor, R. J.; Einstein, F. W. B.
Organometallics 1999, 18, 3414-3428.
of the trapped alkylidene complex, Cp*Mo(NO)(dCHCMe3)-
(NC5D5) (6-d5, 75%) and the trapped η2-benzyne complex, Cp*Mo-
(NO)(η2-C6H4)(NC5D5) (7-d5, 25%). The benzyne proton resonances
of 7-d5 are inequivalent, occurring as overlapping multiplets at δ
7.48 (2H), 7.78 (1H), and 7.89 (1H). The line shapes of these signals
are invariant from 20 to 85 °C in pyridine-d5, thereby indicating
that 7 is stereochemically rigid in this solution and that the Mo-
η2-C6H4 linkage is static.
Complexes 6 and 7, prepared by thermolysis of 4 in pyridine,
can be readily separated by fractional crystallization. Compound 7
as its benzene solvate has been subjected to a single-crystal X-ray
crystallographic analysis, and the resulting ORTEP diagram of 7
is shown in Figure 1.13 The length of the benzyne C-C bond
coordinated to the molybdenum center is 1.356(6) Å, and the other
C-C distances in this ligand range from 1.374(6) to 1.394(6) Å
with an average value of 1.383 Å. The two Mo-C(benzyne)
distances of 2.124(4) and 2.153(4) Å are unequal and larger than
those extant in the molybdenum toluyne complex, Mo(η2-2-
MeC6H3)(2-MeC6H4)2(PMe2Ph)2 (2.011 and 2.056 Å).14 The in-
frared spectrum of 7 in KBr exhibits strong absorptions at 1537
and 1583 cm-1, which are assigned to νNO and νCdC stretching
frequencies, respectively.
The neopentylidene and benzyne intermediates derived from 4
react readily with the aliphatic C-H bonds of various substrates
to generate mixtures of products. For example, thermolysis of 4 in
tetramethylsilane at room temperature for 48 h results in the
formation of 2 (29%) and Cp*Mo(NO)(CH2SiMe3)(C6H5) (8,
41%).15 Similarly, 4 reacts with mesitylene to yield 3 and Cp*Mo-
(NO)(η2-CH2C6H3-3,5-Me2)(C6H5) (9). Although the insertion of
unsaturated small molecules into a metal-carbon bond of a benzyne
complex is a well-established phenomenon, only a relatively few
benzyne complexes (either isolated or invoked) have been reported
to undergo intermolecular C-H bond activation processes, and then
usually at temperatures in excess of 100 °C.16-19 The distribution
of products resulting from the reactions of hydrocarbons with 4
(Scheme 2) appears to be dependent on the nature of the
hydrocarbon substrate, possibly due to the presence of σ-hydro-
carbon complexes on the reaction coordinates of the alkylidene and
(7) Ng, S. H. K.; Adams, C. S.; Legzdins, P. J. J. Am. Chem. Soc., in press.
(8) (a) Debad, J. D.; Legzdins, P.; Rettig, S. J.; Veltheer, J. E. Organometallics
1993, 12, 2714-2725. (b) Legzdins, P.; Young, M. A.; Batchelor, R. J.;
Einstein, F. W. B. J. Am. Chem. Soc. 1995, 117, 8798-8806.
(9) (a) Legzdins, P.; Rettig, S. J.; Veltheer, J. E. J. Am. Chem. Soc. 1992,
114, 6922-6923. (b) Legzdins, P.; Rettig, S. J.; Veltheer, J. E.; Batchelor,
R. J.; Einstein, F. W. B. Organometallics 1993, 12, 3575-3585.
(10) Bau, R.; Mason, S. A.; Patrick, B. O.; Adams, C. S.; Sharp, W. B.;
Legzdins, P. Organometallics 2001, 20, 4492-4501.
(11) Adams, C. S.; Legzdins, P.; McNeil, W. S. Organometallics 2001, 20,
4939-4955.
(12) Schock, L. E.; Brock, C. P.; Marks, T. J. Organometallics 1987, 6, 232-
241.
(13) Crystal data for 7‚C6H6: orthorhomic, space group P212121, a ) 7.8177-
(4) Å, b ) 14.3141(9) Å, c ) 20.5603(10) Å, V ) 2300.8(2) Å3, Z ) 4,
R1 ) 0.052, wR2 ) 0.090.
(14) Koschmieder, S. U.; McGilligan, B. S.; McDermott, G.; Arnold, J.;
Wilkinson, G.; Hussain-Bates, B.; Hursthouse, M. B. J. Chem. Soc., Dalton
Trans. 1990, 3427-3433.
(15) Product distributions were determined by 1H NMR spectroscopy in C6D6.
(16) Debad, J. D. Ph.D. Dissertation, University of British Columbia, 1989.
(17) Erker, G. J. Organomet. Chem. 1977, 134, 189-202.
(18) Fagan, P. J.; Manriques, J. M.; Maatta, E. A.; Seyam, A. M.; Marks, T.
J. J. Am. Chem. Soc. 1981, 103, 6650-6667.
(19) (a) Hartwig, J. F.; Andersen, R. A.; Bergman, R. G. J. Am. Chem. Soc.
1989, 111, 2717-2719. (b) Hartwig, J. F.; Bergman, R. G.; Andersen, R.
A. J. Am. Chem. Soc. 1991, 113, 3404-3418.
(20) Adams, C. S.; Legzdins, P.; Tran, E. Organometallics 2002, 21,
1474-1486.
JA027080M
9
J. AM. CHEM. SOC. VOL. 124, NO. 33, 2002 9681