10.1002/ejoc.201801765
European Journal of Organic Chemistry
FULL PAPER
H. Liu, RSC Adv. 2016, 6, 57441-57445; c) G. Cera, L.
Z. Chen, J. Zou, Y. Zhang, Green Chem. 2013, 15, 2096-2100; c)
Ackermann, Chem. Eur. J. 2016, 22, 8475-8478; d) P. Gandeepan, F. Xiao, H. Xie, S. Liu, G.-J. Deng, Adv. Synth. Catal. 2014, 356,
J. Koeller, L. Ackermann, ACS catal, 2017, 7, 1030-1034; e) Y. L i,
Y. -J. Liu, B.-F. Shi, Adv. Synth. Catal. 2017, 359, 4117-4121; f) Y. -
S. Xiong, Y. Yu , J . We n g , G. L u , Org. Chem. Front. 2018, 5, 982-
989.
[7] T. Gensch, F. J. R. Klauck, F. Glorius, Angew. Chem. 2016,
128, 11457-11461; Angew. Chem. Int. Ed. 2016, 55, 11287-11291.
[8] a) A. Mandal, S. Dana, H. Sahoo, G. S. Grandhi, M. Baidya,
Org. Lett. 2017, 19, 2430-2433; b) W. Ma, Z. Weng, T. Rogge, L.
Gu, J. Lin, A. Peng, X. Luo, X. Gou, L. Ackermann, Adv. Synth.
Catal. 2018, 360, 704-710.
[9] a) X.-L. Fang, R.-Y. Ta n g , P. Zh o n g , J . -H. Li, Synthesis 2009,
24, 4183-4189; b) Z. Li, J. Hong, X. Zhou, Tetrahedron 2011, 67,
3690-3697; c) W. Ge, Y. Wei, Synthesis 2012, 44, 934-940; d) J.
Li, C. Li, S. Yang, Y. An , W. Wu , H. J ia n g , J. Org. Chem. 2016, 81,
7771-7783; e) X. Huang, Y. Chen, S. Zhen, L. Song, M. Gao, P.
Zhang, H. Li, B. Yuan, G. Yang, J. Org. Chem. 2018, 83, 7331-
7340, and references cited therein.
[10] a) S. Zhang, P. Qian, M. Zhang, M. Hu, J. Cheng, J. Org.
Chem. 2010, 75, 6732-6735; b) P. Anbarasan, H. Neumann, M.
Beller, Chem. Commun. 2011, 47, 3233-3235; c) X.-L. Fang, R.-
Y. Ta n g , X. -G. Zhang, J.-H. Li, Synthesis 2011, 7, 1099-1105; d)
P. Sa ra v a n a n , P. An b a ra s an , Org. Lett. 2014, 16, 848-851; e) Yan,
G.; Borah, A. J.; Wang, L. Org. Biomol. Chem. 2014, 12, 9557-
9561; f) L. Chen, P. Liu, J. Wu, B. Dai, Tetrahedron, 2018, 74,
1513-1519, and reference [9e].
364-368; d) S. Thurow, F. Penteado, G. Perin, D. Alves, C. Santi,
B. Monti, C. H. Schiesser, T. Barcellos, E. J. Lenardão, Org. Chem.
Front. 2018, 5, 1983-1991; For an imidazopyridine, see: e) J.
Rafique, S. Saba, A. R. Rosário, A. L. Braga, Chem. Eur. J. 2016,
22, 11854-11862; f) J.-R. Zhang, Y.-Y. L ia o , J . -C. Deng, K.-Y. Feng,
M. Zhang, Y.-Y. Nin g , Z. -W. Lin, R.-Y. Ta n g , Chem. Commun.
2017, 53, 7784-7787; g) J. Rafique, S. Saba, M. S. Franco, L.
Bettanin, A. R. Schneider, L. T. Siva, A. L. Braga, Chem. Eur. J.
2018, 24, 4173-4180.
[15] Z. Liu, K. Ouyang, N. Yang, Org. Biomol. Chem. 2018, 16,
988-992.
[16] K. Nishino, Y. Ogiwara, N. Sakai, Chem. Eur. J. 2018, 24,
10971-10974.
[17] M. Iwasaki, Y, Nishihara, Dalton Trans, 2016, 45, 15278-
15284.
[18] Selected examples of using DMSO as an oxidant, see: a) W.
C. P. Tsang, R. H. Munday, G. Brasche, N. Zheng, S. L. Buchwald,
J. Org. Chem. 2008, 73, 7603-7610 and see also ref [16] and [17].
[19] When using 1,3-dimethoxybenzene or anisole, which are
similar to 1,3,5-trimethoxybenzene as an electron-rich arene, the
corresponding sulfide was obtained in 24% (3i), 0% yields,
respectively.
[20] When using 0.5 equiv of disulfide 2c, only product 7b was
obtained in a 24% yield, and formation of a mono-sulfidated
indolizine was not observed.
[11] Selected examples: a) M. Arisawa, F. Toriyama, M.
[21] The example of the preparation of bis-sulfenylated indolizines,
Yamaguchi, Tetrahedron Lett. 2011, 52, 2344-2347; b) A.-X. Zhou, see: a) Q. Wu, D. Ahao, X. Qin, J. Lan, J. You, Chem. Commun.
X.-Y. L iu , K. Ya n g , S. -C. Zhao, Y.-M. Liang, Org. Biomol. Chem.
2011, 9, 5456; c) H. Inomata, A. Toh, T. Mitsui, S.-i. Fukuzawa,
Tetrahedron Lett. 2013, 54, 4729-4731; d) X. Wang, Y. Li, Y. Yuan,
Synthesis 2013, 45, 1247-1255; e) A. R. Rosario, K. K. Casola, C.
E. S. Oliveira, G. Zeni, Adv. Synth. Catal. 2013, 355, 2960-2966;
f) P. Ga n d e e pa n , J . Mo , L. Ackermann, Chem. Commun. 2017,
53, 5906-5909; g) T. Guo, X.-N. Wei, Y.-L. Zhu, H. Chen, S.-L.
Han, Y.-C. Ma, Synlett 2018, 29, 1530-1536; h) J. Rafique, S.
Saba, T. E. A. Frizon, A. L. Braga, ChemistrySelect 2018, 3, 328-
334.
2011, 47, 9188-9190; b) B. Li, Z. Chen, H. Cao, H. Zhao, Org. Lett.
2018, 20, 3291-3295.
[22] Examination of the others reaction conditions of sulfidation of
pentafluorobenzene was shown at TableS1 in Supporting
Information.
[23] When 1,3,5-trimethoxybenzene was treated with 0.5 equiv of
diphenyl diselenide under our standard conditions, a ratio of the
mono-selenated product and bis-selenated product 10a was to be
2.5:1 with an NMR spectroscopic analysis.
[24] The example of that a Se–Se bond of diaryl diselenide is
cleaved by oxidative addition of a palladium(II) catalyst, see: a) A.
J. Canty, H. Jin, B. W. Skelton, A. H. White, Inorg. Chem. 1998,
37, 3975-3981; b) A. J. Canty, M. C. Denney, J. Patel, H. Sun, B.
W. Skelton, A. H. White, J. Organomet. Chem. 2004, 689, 672-
677.
[25] A base-promoted C–S bond formation of pentafluorobenzene
via aromatic nucleophilic substitution, see: Q. Zhou, B. Zhang, H.
Gu, A. Zhong, T. Du, Q. Zhou, Y. Ye, Z. Jin, H. Jiang, R. Chen,
Lett. Org. Chem. 2012, 9, 175-182.
[26] When the reaction of pentafluorobenzene with diphenyl
disulfide was conducted with only CsF, bis-sulfidated product 9a
was only obtained in a 28% yield, and formation of mono-
sulfidated products, 11 and 12 were not observed.
[12] a) C. Yu, C. Zhang, X. Shi, Eur. J. Org. Chem. 2012, 1953-
1959; b) C. Yu, G. Hu, C. Zhang, R. Wu, H. Ye, G. Yang, X. Shi,
J. Fluorine Chem. 2013, 153, 33-38.
[13] For selected examples of C–H sulfidation of
trimethoxybenzene see: a) F. Bottino, R. Fradullo, S. Pappalardo,
J. Org. Chem. 1981, 46, 2793-2795; b) S. K. R. Parumala, R. K.
Peddinti, Green. Chem. 2015, 17, 4068-4072; c) D. Wang, R.
Zhang, S. Lin, Z. Yan, S. Guo, RSC Adv. 2015, 5, 108030-108033;
d) T. Hostier, V. Ferey, G. Ricci, D. G. Pardo, J. Cossy, Org. Lett.
2015. 17. 3898-3901; e) D. Wang, S. Guo, R. Zhang, S. Lin, Z.
Yan, RSC Adv. 2016, 6, 54377-54381; f) M. R. Reddy, G. S.
Kumar, H. M. Meshram, Tetrahedron Lett. 2016, 57, 3622-3624;
[14] For selected examples of C–H sulfidation of an indole, see:
a) W. Ge, Y. Wei, Green Chem. 2012, 14, 2066-2070; b) P. Sa n g ,
This article is protected by copyright. All rights reserved.