Organic Letters
Letter
Z.; Dong, V. M. J. Am. Chem. Soc. 2015, 137, 8392. (c) Li, C.; Kahny,
K.; Breit, B. Angew. Chem., Int. Ed. 2014, 53, 13780.
potentially new biological activities/functions can be evolved
from this method. Extrapolation of this method to other N-
heterocyclic glycosides as well as synthetic application is in
progress.
(16) For unsuccessful examples using Pd-catalyzed reactions where
the unprotected pyrimines showed poor reactivity, see: (a) Trost, B.
M.; Madsen, R.; Guile, S. D.; Brown, B. J. Am. Chem. Soc. 2000, 122,
5947. (b) Trost, B. M.; Shi, Z. J. Am. Chem. Soc. 1996, 118, 3037.
(17) For Ir-catalyzed asymmetric allylic substitution reaction using
unprotected purines, see: Stanley, L. M.; Hartwig, J. F. J. Am. Chem.
Soc. 2009, 131, 8971.
(18) For selected recent examples of metal-catalyzed asymmetric
allylic amination reaction, see: (a) Yang, Z.-P.; Wu, Q.-F.; You, S.-L.
Angew. Chem., Int. Ed. 2014, 53, 6986. (b) Wang, X.; Meng, F.; Wang,
Y.; Han, Z.; Chen, Y.; Liu, L.; Wang, Z.; Ding, K. Angew. Chem., Int.
Ed. 2012, 51, 9276.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
1
Experimental details and spectral data; H and 13C scan
of all new compounds (PDF)
(19) Zhang, Y.; Knapp, S. J. Org. Chem. 2016, 81, 2228.
(20) For a review on the synthesis of L-nucleosides, see: Romeo, G.;
Chiacchio, U.; Corsaro, A.; Merino, P. Chem. Rev. 2010, 110, 3337.
(21) For selected examples on the RCM reaction of Lewis basic
amines, see: (a) Amblard, F.; Nolan, S. P.; Agrofoglio, L. A.
Tetrahedron 2005, 61, 7067. (b) Compain, P. Adv. Synth. Catal.
2007, 349, 1829.
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(22) Luzzio, F. A.; Menes, M. E. J. Org. Chem. 1994, 59, 7267.
(23) Nomura, H.; Yoshioka, Y.; Minami, I. Chem. Pharm. Bull. 1979,
27, 899.
Notes
(24) Yasumoto, M.; Moriyama, A.; Unemi, N.; Hashimoto, S.; Suzue,
T. J. Med. Chem. 1977, 20, 1592.
The authors declare no competing financial interest.
(25) Sabatino, D.; Damha, M. J. Am. Chem. Soc. 2007, 129, 8259.
(26) Unprotected adenine also showed high yield and selectivity in
the reaction with alkoxyallenes 1a and 6. For the detailed information
ACKNOWLEDGMENTS
■
Financial support for this work was provided by the National
Research Foundation of Korea, which is funded by the Korean
Government (NRF-2015R1A2A1A15056116).
̆
(27) Jang, Y. H.; Sowers, L. C.; Çagin, T.; Goddard, W. A. J. Phys.
Chem. A 2001, 105, 274.
(28) For a review on a Pd-catalyzed asymmetric substitution reaction,
see: Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006,
39, 747.
(29) An inner-sphere addition reaction of the nucleophile to the
isomeric palladium syn complex cannot be excluded. For a related
study, see: Keith, J. A.; Behenna, D. C.; Sherden, N.; Mohr, J. T.; Ma,
S.; Marinescu, S. C.; Nielsen, R. J.; Oxgaard, J.; Stoltz, B. M.; Goddard,
W. A. J. Am. Chem. Soc. 2012, 134, 19050.
(30) The regioselectivity of pyrimidine (particularly substituted
uracils) addition may be explained by the higher reactivity of the N3
nitrogen atom. For a related discussion, see: Boncel, S.; Gondela, C.;
Walczak, K. Synthesis 2010, 2010, 1573.
(31) According to calculation studies, the N3 position is predicted to
be more acidic in water while the N1 position is predicted be more
acidic in a nonpolar environment. For reference, see: Kurinovich, M.
A.; Lee, J. K. J. Am. Chem. Soc. 2000, 122, 6258. Also see ref 27.
(32) Smallwood, I. M. Handbook of organic solvent properties; Halsted
Press: Arnold, 1996; p 301.
REFERENCES
■
(1) Ichikawa, S.; Matsuda, A. Expert Opin. Ther. Pat. 2007, 17, 487.
(2) Harmon, R. E. Chemistry and Biology of Nucleosides and
Nucleotides; Academic Press: 1978.
(3) Vorbruggen, H.; Ruh-Pohlenz, C. Organic Reactions; John Wiley
̈
& Sons, Inc.: 2004.
(4) Brito-Arias, M. Synthesis and Characterization of Glycosides;
Springer International Publishing: Cham, 2016; p 169.
(5) For selected recent reviews on the RCM reaction, see: Deiters,
A.; Martin, S. F. Chem. Rev. 2004, 104, 2199.
(6) For early examples using RCM reactions for nucleoside synthesis,
see: Ewing, D.; Glaco̧ n, V.; Mackenzie, G.; Postel, D.; Len, C.
Tetrahedron Lett. 2002, 43, 3503.
(7) (a) Kinderman, S. S.; de Gelder, R.; van Maarseveen, J. H.;
Schoemaker, H. E.; Hiemstra, H.; Rutjes, F. P. J. T. J. Am. Chem. Soc.
2004, 126, 4100. (b) Donohoe, T. J.; Orr, A. J.; Gosby, K.; Bingham,
M. Eur. J. Org. Chem. 2005, 2005, 1969.
(8) (a) Kim, H.; Rhee, Y. H. Synlett 2012, 23, 2875. (b) Kim, H.;
Rhee, Y. H. J. Am. Chem. Soc. 2012, 134, 4011. (c) Kim, H.; Lim, W.;
Im, D.; Kim, D.-g.; Rhee, Y. H. Angew. Chem., Int. Ed. 2012, 51, 12055.
(9) (a) Lim, W.; Kim, J.; Rhee, Y. H. J. Am. Chem. Soc. 2014, 136,
13618. (b) Kim, M.; Kang, S.; Rhee, Y. H. Angew. Chem., Int. Ed. 2016,
55, 9733.
(10) For an early review on the racemic hydrofunctionalization of an
allene, see: Yamamoto, Y.; Radhakrishnan, U. Chem. Soc. Rev. 1999, 28,
199.
(11) For the Pd-catalyzed asymmetric hydrocarbanation of an
alkoxyallene, see: Trost, B. M.; Xie, J.; Sieber, J. D. J. Am. Chem. Soc.
2011, 133, 20611.
(12) Narhi, K.; Franzen, J.; Backvall, J.-E. Chem. - Eur. J. 2005, 11,
́
̈
̈
6937.
(13) Li, X.; Zhu, J. Eur. J. Org. Chem. 2016, 2016, 4724.
(14) For a review on the metal catalysis for nucleoside synthesis, see:
Agrofoglio, L. A.; Gillaizeau, I.; Saito, Y. Chem. Rev. 2003, 103, 1875.
(15) For selected recent examples on the Rh-catalyzed allyic amine
synthesis via hydrofunctionalization of allenes, see: (a) Thieme, N.;
Breit, B. Angew. Chem., Int. Ed. 2017, 56, 1520. (b) Chen, Q. A.; Chen,
D
Org. Lett. XXXX, XXX, XXX−XXX