F. G. Menezes et al. / Tetrahedron Letters 50 (2009) 2559–2561
2561
Table 3
15. Martins, M. A. P.; Emmerich, D. J.; Pereira, C. M. P.; Cunico, W.; Rossato, M.;
Zanatta, N.; Bonacorso, H. G. Tetrahedron Lett. 2004, 45, 4935.
Conversion of aliphatic and benzoic acids into the respective amides mediated by
hexabromoacetone/triphenylphosphine
16. Hexabromoacetone, HBA: mp 108 °C (Lit.8 109 °C). IR (KBr)
m 1725, 1070, 763,
563. 13C NMR (100 MHz, CDCl3) d (ppm) 173.6 (C@O), 24.8 (CBr3). Anal. Calcd
for C3OBr3: C, 6.78. Found: C, 6.82. Yield: 70%.
1) HBA (0.3 eq.), PPh3 (1.5 eq.),
O
O
CH2Cl2, r.t., 3h
17. X-ray crystallographic data: An irregular block was cut off from a soft crystal
and selected for crystallographic measurements. X-ray analysis was carried out
R
OH
R
NR'R''
2) R'R''NH (1.0 eq.),
Et3N (3.0 eq.), r.t., 15 min
on an Enraf-Nonius CAD-4 diffractometer with monochromatic Mo-K
a
radiation (0.71069 Å), at room temperature. Cell parameters were
determined from 25 centered reflections in the h range 3.93–12.20°. One
thousand nine hundred and eight poorly diffracted intensities were collected
Entry
R
R0
R00
Yield (%)
using the
1020 with [I > 2
x
–2h scan method, of which 1790 (Rint = 0.1170) are unique and
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
Ph
n-But
s-But
t-But
c-Hex
H
H
H
H
H
H
H
H
Et
H
H
H
H
H
H
86
72
70
75
85
89
81
82
70
83
90
91
60
57
53
r
(I)], with h angle ranging from 1.98o to 25.00o. Due to high
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
absorption coefficient of HBA, a numerical absorption correction should be
indicated. However, once the selected crystal had an irregular shape, the
empirical absorption correction (w-scan) was applied with better results with
Ph
respect to numerical absorption correction. All atoms were refined with
anisotropic thermal parameters. Crystal data: formula: C3Br6O, FW = 531.49,
monoclinic, P21/n, a = 6.292(7) Å, b = 20.619(1) Å, c = 8.242(1) Å, b = 107.88(1)o,
4-n-But-Ph
4-NO2-Ph
3,5-DiNO2-Ph
Et
c-Hex
Ph
V = 107.88(1) Å3, Z = 4,
q l
calc = 3.469 Mg/m3, = 23.611 mmꢀ1, F(0 0 0) = 944,
w
-scan transmission factors: 0.015 and 0.101, parameters = 92, GOOF
(F2) = 0.958, R1 [I > 2
r(I)] = 0.0986, wR2 (all data) = 0.2574. Crystallographic
4-MeO-Ph
4-MeO-Ph
4-MeO-Ph
Me
Et
n-Prop
data (excluding structure factors) for the structure in this Letter have been
deposited with the Cambridge Crystallographic Data Centre as supplementary
publication number CCDC 713085. Copies of the data can be obtained, free of
charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax:
+44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.Uk).
4-n-But-Ph
Ph
Ph
Ph
18. General procedure for obtainment of alkyl 2,2,2-tribromoacetates: The following
reagents were placed in a round-bottomed flask: 6.70 mmol of the respective
alcohols (methanol, ethanol, n-propanol, n-butanol, n-pentanol, and i-amyl
alcohol), previously dried by traditional methods,21 and 0.43 mL of DMF
(5.60 mmol). After that 3.00 g (5.64 mmol of HBA was added and the solution
was stirred at 60 °C, for 10 h. The products were purified by column
chromatography on silica gel using hexane–chloroform mixtures as the
eluent. The products were obtained as transparent oils, with yields of 55% to
triphenylphosphine, gave good results in the conversion of benzoic
acids into the respective amines.
Acknowledgments
65%. Methyl tribromoacetate, 1: IR (KBr)
m
2955, 1751, 1235, 758, 609. 1H NMR
(400 MHz, CDCl3) d (ppm) 4.01 (s, 3H). 13C NMR (100 MHz, CDCl3) d (ppm)
163.0, 56.3, 28.6 (Lit.22 161.8, 55.8, 28.4). MS: m/z 310 (M+), 250.8, 230.9, 171.9,
92.9, 78.9, 59.0. Yield: 65%.
The authors are grateful to the Brazilian entities UFSC, CAPES,
INCT-cat, and FAPESC. Also, we would like to thank Dr. Faruk Nome
and Dr. Jacks P. Priebe for the GC and GC–MS analysis.
19. General procedure for the reactions of HBA with amines: obtainment of 2,2,2-
tribromo-N-alkylacetamides or mixtures of 2,2,2-tribromo-N-alkylacetamides and
2,2-dibromo-N-alkylacetamides: Firstly, 1 g (1.88 mmol) of HBA was added
References and notes
portionwise to
a round-bottomed flask containing 3.76 mmol of amine
(ethylamine, n-propylamine, i-propylamine, n-butylamine, s-butylamine, and
hexylamine), previously distilled,23 in 5 mL of chloroform. The solution was
then maintained under magnetic stirring at room temperature for 1 h,
monitored by TLC. After the total consumption of HBA, the chloroform was
eliminated in a rotavapor, and the residue was dried and purified by column
chromatography on silica gel using mixtures of hexane–chloroform as the
eluent, providing the respective pure brominated acetamides after evaporation
of the solvent and recrystallization in 5:1 (v/v) hexane–chloroform. 2,2,2-
tribromo-N-isopropylacetamide, 9a: mp 80–81 °C (Lit.24 80 °C). IR (KBr) mmax
(cmꢀ1) 3302, 2970, 1662, 1518, 1238, 1141, 750, 682, 596. 1H NMR (400 MHz,
CDCl3) d (ppm) 6.65 (br, 1H, NH), 4.15–4.04 (m, 1H, CH), 1.29 (d, J = 6.8 Hz, 6H,
CH3). 13C NMR (100 MHz, CDCl3) d (ppm) 161.6 (C@O), 44.6 (CH), 37.5 (CBr3),
22.2 (CH3). DEPT (100 MHz, CDCl3) d (ppm) 44.6 (CH), 22.2 (CH3). Anal. Calcd
for C5H8NOBr3: C, 17.78; H. 2.39; N. 4.15. Found: C, 17.65; H, 2.50; N, 4.25.
Yield: 50%. 2,2-dibromo-N-isopropylacetamide, 9b: mp 149–150 °C. IR (KBr) mmax
(cmꢀ1) 3282, 2971, 1654, 1551, 1458, 1194, 788, 676, 596. 1H NMR (400 MHz,
CDCl3) d (ppm) 6.32 (br, 1H, NH), 5.79 (s, 1H, CHBr2), 4.12–3.96 (m, 1H, CH),
1.22 (d, J = 6.8 Hz, 6H, CH3). 13C NMR (100 MHz, CDCl3) d (ppm) 163.8 (C@O),
43.2 (CH), 37.1 (CHBr2), 22.3 (CH3). DEPT (100 MHz, CDCl3) d (ppm) 43.2 (CH),
37.1 (CHBr2), 22.3 (CH3). Anal. Calcd for C5H9NOBr2: C, 23.19; H, 3.50; N, 5.41.
Found: C, 23.27; H, 3.59; N, 5.47. Yield: 15%.
1. Freedlander, R. S.; Bryson, T. A.; Dunlap, R. B.; Schulman, E. M.; Lewis, C. A. J. Org
Chem. 1981, 46, 3519.
2. Bew, C.; de Joshi, V. O.; Gray, J.; Kaye, P. T.; Meakins, G. D. J. Chem. Soc., Perkin
Trans. 1 1982, 4, 945.
3. (a) Chavasiri, W.; Pluempanupat, W.; Chantarasriwong, O.; Taboonpong, P.; Jan,
D. O. Tetrahedron Lett. 2007, 48, 223; (b) Pluempanupat, W.; Chavasiri, W.
Tetrahedron Lett. 2006, 47, 6821; (c) Clayden, J.; Greeves, N.; Warren, S.;
Wothers, P. Organic Chemistry, 1st ed.; Oxford University Press: New York, 2001.
pp 608–609; (d) McGlinchey, M. J.; Brook, M. A.; Balduzzi, S. Organometallics
2005, 24, 2617; (e) Deslongchamps, P.; Bourque, E.; Phoenix, S. Org. Lett. 2000, 2,
4149; (f) Conte, G.; Ely, F.; Gallardo, H. Liq. Cryst. 2005, 32, 1213; (g) Magid, R.
M.; Fruchey, O. S.; Johnson, W. L. Tetrahedron Lett. 1977, 35, 2999.
4. Werbovetz, K. A.; Li, C.; Fotie, J.; Yakovich, A. J.; Mukherjee, M. S.; Delfín, D. A.;
Mahasenan, K. V.; Morgan, R. E.; Endeshaw, M. M.; George, T. G. Bioorg. Med.
Chem. 2007, 15, 6071.
5. (a) Zucco, C.; Rezende, M. C.; Dall’Oglio, E. L. Tetrahedron Lett. 1996, 37, 5265;
(b) Zucco, C.; Rezende, M. C.; Marques, C. A.; Dall’Oglio, E. L. Liebigs Ann., Recueil
1997, 5, 925; (c) Zucco, C.; Rezende, M. C.; Dall’Oglio, E. L. Synth. Comm. 2001,
31, 607; (d) Dall’Oglio, E. L.; Caro, M. S. B.; Gesser, J. C.; Zucco, C.; Rezende, M. C.
J. Braz. Chem. Soc. 2002, 13, 251; (e) Cristiano, R.; Vieira, A. A.; Ely, F.; Gallardo,
H. Liq. Cryst. 2006, 33, 381; (f) Dall’Oglio, E. L.; Salmoria, G. V.; Gallardo, H.;
Neves, A.; Rezende, M. C.; Zucco, C. J. Phys. Org. Chem. 1998, 11, 411.
6. (a) Gordon, E.P.; Elesina, L.N.; Enakaeva, V.G.; Mitrokhin, A.M.; Poddubnyi, I.S.
RU Patent 2,309,935, 2007; CAN 147:522096; (b) Gordon, E.P.; Elesina, L.N.;
Enakaeva, V.G.; Mitrokhin, A.M.; Poddubnyi, I.S. RU Patent 2,309,934, 2007;
CAN 147:504235.
20. General procedure for obtainment of amides from carboxylic acids mediated by
HBA: Firstly, 1.00 mmol of carboxylic acid was added to a solution containing
0.16 g (0.30 mmol) of HBA and 0.394 g (1.50 mmol) of triphenylphosphine, in
2 mL of dry dichloromethane. The solution was stirred at room temperature for
1 h, and then 0.31 g (3.00 mmol) of triethylamine and 1.00 mmol of the
different amines were added. The solution was kept under stirring for 15 min
at room temperature. The solution was then diluted in 20 mL dichloromethane
and washed with water. The organic phase was dried with anhydride
magnesium sulfate, the solvent evaporated in a rotavapor, and the residue
purified by column chromatography on silica gel, using 4:1 (v/v) mixture of
hexane:ethyl acetate in order to obtain the pure amides.
21. (a) Vogel, A. I. In Vogel’s Text Book of Pratical Organic Chemistry; Furniss, B. S.,
Hannaford, A. J., Smith, P. W. G., Tatchell, A. R., Eds., 5th ed.; Longmann
Scientific and Technical, 1989; pp 400–403; (b) Perrin, D. D.; Armarego, W. L. F.
In Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press, 1988; p 84.
107, 174, 217, 264.
7. Föhlisch, B.; Reiner, S. Molecules 2004, 9, 1.
8. Gilbert, E. E. Tetrahedron 1969, 25, 1801.
9. Chavasiri, W.; Pluempanupat, W.; Tongkate, P. Tetrahedron Lett. 2008, 49, 1146.
10. (a) Mioskowski, C.; Falck, J. R.; Bejot, R.; Barma, D. K.; Bandyopadhyay, A.;
Joseph, S. J. Org. Chem. 2006, 71, 8178; (b) Falck, J. R.; Barma, D. K.; Kundu, A.;
Zhang, H.; Mioskowski, C. J. Am. Chem. Soc. 2003, 125, 3218; (c) Bartulin, J.;
Belmar, J.; Gallardo, H.; Leon, G. J. Het. Chem 1994, 31, 561; (d) Concellón, J. M.;
Rodríguez-Solla, H.; Díaz, P. Org. Biomol. Chem. 2008, 6, 2934.
11. Jang, D. O.; Chavasiri, W.; Kang, D. H.; Joo, T. Y.; Lee, E. H.; Chaysripongkul, S.
Tetrahedron Lett. 2006, 47, 5693.
12. Nishikawa, T.; Urabe, D.; Tomita, M.; Tsujimoto, T.; Iwabuchi, T.; Isobe, M. Org.
Lett. 2006, 8, 3263.
13. Paugam, J. P.; Oudeyer, S.; Léonel, E.; Sulpice-Gaillet, C.; Nédélec, J. Tetrahedron
2006, 62, 1583.
22. Velichko, F. K.; Dostovalova, V. I.; Vinogradova, L. V.; Freidlina, R. K. Org. Magn.
Reson. 1980, 13, 442.
23. Ethylamine was used as aqueous solution.
24. Nyquist, R.A.; McLachlan, R.D. U.S. Patent 3,206,509, 1965; Chem. Abstr. 1965,
63:P 13090d.
14. Rivera, N. G.; Becerril, D. C.; Guadarrama-Pérez, M.; Covarrubias-Zuñiga, A.;
Avila-Zárraga, J. G.; Romero-Ortega, M. Tetrahedron Lett. 2007, 48, 1201.