34
H. Yoshino et al. / Journal of Fluorine Chemistry 127 (2006) 29–35
5.2.3. 2-Fluorocyclohexanol (7c) [4b]
in DMF. 8f was prepared from 1-trimethylsiloxy-9-decene by
oxidation with 3-chloroperoxybenzoic acid.
1H NMR (300 MHz, CDCl3): d 4.21 (dm, J = 51.3 Hz, 1H),
3.67–3.57 (m, 1H), 2.45 (bs, 1H), 2.13–1.99 (m, 2H), 1.77–1.69
(m, 2H), 1.51–1.20 (m, 4H). 19F NMR (282 MHz, CDCl3): d
ꢀ181.4 (d, J = 51.3 Hz).
5.4.1. 6-(Trimethylsilyl)-5-hexyn-1-ol (9d) [23]
1H NMR (300 MHz, CDCl3): d 3.68 (t, J = 6.0, 2H), 2.27 (t,
J = 6.6 Hz, 2H), 1.72–1.56 (m, 2H), 0.14 (s, 9H).
5.2.4. 2-Fluoro-2-methylcyclohexanol (7d) [22]
1H NMR (300 MHz, CDCl3): d 3.76–3.67 (m, 1H), 2.17 (bs,
1H), 1.94–1.21 (m, 11H). 19F NMR (282 MHz, CDCl3): d
ꢀ142.0 (m).
5.4.2. 4O-(Tetrahydropyran-2-yl)-1-butanol (9e) [24]
1H NMR (300 MHz, CDCl3): d 4.61–4.56 (m, 1H), 3.89–
3.72 (m, 2H), 3.66 (t, J = 6.3 Hz, 2H), 3.54–3.41 (m, 2H), 1.68–
1.46 (m, 10H).
5.2.5. 2-Fluoro-2-methyl-3-decanol (7e)
1H NMR (300 MHz, CDCl3): d 3.55 (t, J = 7.5 Hz, 1H), 1.98
(s, 1H), 1.36 (d, J = 3.9 Hz, 6H), 1.35–1.24 (m, 14H), 0.88 (t,
J = 6.9 Hz, 3H). 13C NMR (75 MHz, CDCl3): d 98.5 (d,
J = 163.4 Hz), 77.2 (d, J = 23.3 Hz), 32.2, 31.6, 31.5, 30.0,
29.9, 24.2, 23.0, 21.3 (d, J = 24.5 Hz, 2C), 14.5. 19F NMR
(282 MHz, CDCl3): d ꢀ144.7 (m). Anal. calcd. for C12H25FO:
C, 70.54; H, 12.33. Found: C, 70.48; H, 12.28.
5.4.3. 9,10-Epoxy-1-decanol (9f) [25]
1H NMR (300 MHz, CDCl3): d 3.64 (t, J = 6.6 Hz, 2H),
2.93–2.88 (m, 1H), 2.75 (dd, J = 5.1, 5.1 Hz, 1H), 2.45 (dd,
J = 5.1, 5.1 Hz, 1H), 1.59–1.26 (m, 14H).
Acknowledgements
This work was supported financially by the Japan Ministry
of Education, Science, Sports, and Culture. The financial
support provided by Chugai Pharmaceutical Co., Ltd. and that
from Takahashi Industrial and Economical Research Founda-
tion are also acknowledged.
5.2.6. 2-Fluoro-2-methyldecanol (7f)
1H NMR (300 MHz, CDCl3): d 3.67–3.47 (m, 2H), 1.76–
1.56 (m, 2H), 1.36 (s, 3H), 1.34–1.22 (m, 12H), 0.88 (t,
J = 6.9 Hz, 3H). 13C NMR (75 MHz, CDCl3): d 98.0 (d,
J = 165.3 Hz), 68.43 (d, J = 23.4 Hz), 36.6 (d, J = 22.2 Hz),
32.2, 30.4, 29.8, 29.6, 23.8 (d, J = 6.3 Hz), 23.0, 21.1 (d,
J = 24.5 Hz), 14.5. 19F NMR (282 MHz, CDCl3): d ꢀ154.8 (m).
Anal. calcd. for C11H23FO: C, 69.43; H, 12.18. Found: C,
69.68; H, 11.88.
References
[1] (a) C.M. Sharts, W.A. Sheppard, Org. React. 21 (1974) 125–406;
(b) T. Hiyama, Organofluorine Compounds, Springer Verlag, New York,
2000.
´
[2] (a) A. Bowers, L.C. Iban˜ez, E. Denot, R. Becerra, J. Am. Chem. Soc. 82
5.2.7. 6-Fluoro-5-decanol (7g)
(1960) 4001–4007;
1H NMR (300 MHz, CDCl3): d 4.37 (ddt, J = 47.7, 9.3,
3.9 Hz, 1H), 3.77–3.69 (m, 1H), 1.77–1.25 (m, 12H), 0.92 (t,
J = 7.2 Hz, 6H). 13C NMR (75 MHz, CDCl3): d 96.6 (d,
J = 167.9 Hz), 73.0 (d, J = 21.6 Hz), 31.4, 29.2 (d,
J = 20.7 Hz), 28.0, 27.6, 22.7, 22.6, 14.1, 14.0. 19F NMR
(282 MHz, CDCl3): d ꢀ190.8 (m). Anal. calcd. for C10H21FO:
C, 68.14; H, 12.01. Found: C, 68.21; H, 11.72.
(b) A. Bowers, E. Denot, R. Becerra, J. Am. Chem. Soc. 82 (1960) 4007–
4012.
[3] (a) G.A. Olah, J.T. Welch, Y.D. Vankar, M. Nojima, I. Kerebe, J.A. Olah,
J. Org. Chem. 44 (1979) 3872–3881;
(b) D.Y. Chi, M.R. Kilbourn, J.A. Katzenellenbogen, M.J. Welch, J. Org.
Chem. 52 (1987) 658–664.
[4] (a) G. Alvernhe, A. Lawrent, G. Haufe, Synthesis (1987) 562–564;
(b) M. Tamura, M. Shibakami, A. Sekiya, Synthesis (1995) 515–517.
[5] (a) G.A. Olah, X.-Y. Li, Q. Wang, G.K.S. Prakash, Synthesis (1993) 693–
699;
5.3. General procedure for desilylation of silyl ether
¨ ¨
(b) I. Bucsi, B. Torok, A.I. Marco, G. Rasul, G.K.S. Prakash, G.A. Olah, J.
Am. Chem. Soc. 124 (2002) 7728–7736.
In a 15 mm polypropylene tube, silylether (8, 1.0 mmol),
CH2Cl2 (500 ml), and methanol (4 ml) were placed. Ionic liquid
EMIMF(HF)2.3 (1, 600 ml) was added to the mixture at room
temperature, and the mixture was stirred. When the reaction
finished, ethyl acetate (1 ml) was added and the whole was
stirred vigorously. After the stirring was stopped, the mixture
had separated into two phases. The upper layer was collected by
decantation. This extraction with ethyl acetate was repeated
twice more. The collected organic layers were evaporated in
vacuo. The crude product was purified by short silica-gel
column chromatography.
[6] C.C. Tzschucke, C. Markert, W. Bannwarth, S. Roller, A. Hebel, R. Haag,
Angew. Chem. Int. Ed. 41 (2002) 3964–4000.
[7] R. Hagiwara, K. Matsumoto, Y. Nakamori, T. Tsuda, Y. Ito, H. Matsu-
moto, K. Momota, J. Electrochem. Soc. 149 (2003) D195–D199.
[8] H. Yoshino, S. Matsubara, K. Oshima, K. Matsumoto, R. Hagiwara, Y. Ito,
J. Fluorine Chem. 125 (2004) 455–458.
[9] H. Yoshino, K. Nomura, S. Matsubara, K. Oshima, K. Matsumoto, R.
Hagiwara, Y. Ito, J. Fluorine Chem. 125 (2004) 1127–1129.
[10] E.W. Colvin, Chem. Soc. Rev. 7 (1978) 15–64.
[11] T.V. Lee, S.M. Roberts, M.J. Dimsdale, R.F. Newton, D.K. Rainey, C.F.
Webb, J. Chem. Soc. Perkin Trans. I (1978) 1176–1178.
[12] E.J. Corey, A. Venkateswarlu, J. Am. Chem. Soc. 94 (1972) 6190–6191.
[13] R.F. Newton, D.P. Reynolds, A.W. Finch, D.R. Kelly, S.M. Roberts,
Tetrahedron Lett. 20 (1979) 3981–3982.
[14] (a) J.A. Marshall, R.C. Andrews, J. Org. Chem. 50 (1985) 1602–1606;
(b) W.R. Roush, H.R. Gillis, S.E. Hall, Tetrahedron Lett. 21 (1980) 1023–
1026.
5.4. Preparation of silyl ethers
Silyl ethers 8a–8e were prepared from corresponding
alcohols by O-silylation with silylchloride and 1H-imidazole
[15] M. Kuroboshi, T. Hiyama, Bull. Chem. Soc. Jpn. 68 (1995) 1799–1805.
[16] S. Rozen, M. Brand, J. Org. Chem. 50 (1985) 3342–3348.