A. M. Fenner, R. J. Kerns / Carbohydrate Research 346 (2011) 2792–2800
2799
product as a white solid. Products were analyzed by CE to show com-
Acknowledgments
plete removal of sulfate and LC–MS to determine product purity or
composition (methods described in Section 4.6).
We are grateful to Dr. Lynn Teesch, the University of Iowa High
Resolution Mass Spectrometry Facility, for her insightful advice in
developing and troubleshooting ESI-MS and LC–MS methods in
this work. We are also grateful to Professor Lei Geng and Claudiu
Brumaru, the University of Iowa Department of Chemistry, for ad-
vice and assistance with CE. This work was supported in part by an
NIH Predoctoral Training Grant in the Pharmacological Sciences to
A.F. (T32 GM067795), an ACS Division of Medicinal Chemistry Pre-
doctoral Fellowship sponsored by Bristol-Myers Squibb to A.F., and
a Predoctoral Fellowship from the American Foundation for Phar-
maceutical Education to A.F.
4.6. Capillary electrophoresis to demonstrate removal of sulfate
N-Cbz O-sulfonated aminoglycoside was dissolved in DI water
to give a stock solution (1 mg/mL). Similarly, a stock solution of
Na2SO4 was prepared and serially diluted to generate a standard
curve of sulfate concentrations between 0 and 25 mM Na2SO4. An
autosampler was used to inject samples over 10 s at 0.5 psi. Sepa-
ration was performed at 20.0 kV (25 °C, 50 cm capillary, 5 lm
linear diameter, 4 Hz) using a buffer composed of 10 mM 5-sul-
fosalicyic acid pH 3.0.54,55 Sodium sulfate was detected by indirect
absorbance at 214 nm. Sodium sulfate concentration was calcu-
lated from the standard curve, and products desalted until sulfate
was undetectable.
References
1. Dreyfuss, J. L.; Regatieri, C. V.; Jarrouge, T. R.; Cavalheiro, R. P.; Sampaio, L. O.;
Nader, H. B. An. Acad. Bras. Cienc. 2009, 81, 409–429.
2. Hacker, U.; Nybakken, K.; Perrimon, N. Nat. Rev. Mol. Cell Biol. 2005, 6, 530–541.
3. Zhang, L. In Glycosaminoglycan (GAG) Biosynthesis and GAG-Binding Proteins;
Lijuan, Z., Ed.; Academic Press: San Diego, 2010; Vol. 93, pp 1–17.
4. Capila, I.; Linhardt, R. J. Angew. Chem., Int. Ed. 2002, 41, 391–412.
5. Powell, A. K.; Yates, E. A.; Fernig, D. G.; Turnbull, J. E. Glycobiology 2004, 14,
17R–30R.
6. Casu, B.; Vlodavsky, I.; Sanderson, R. D. Pathophysiol. Haemost. Thromb. 2008,
36, 195–203.
7. Laremore, T. N.; Zhang, F.; Dordick, J. S.; Liu, J.; Linhardt, R. J. Curr. Opin. Chem.
Biol. 2009, 13, 633–640.
8. Bernfield, M.; Gotte, M.; Park, P. W.; Reizes, O.; Fitzgerald, M. L.; Lincecum, J.;
Zako, M. Annu. Rev. Biochem. 1999, 68, 729–777.
9. Tumova, S.; Woods, A.; Couchman, J. R. Int. J. Biochem. Cell Biol. 2000, 32, 269–
288.
10. Kirn-Safran, C.; Farach-Carson, M. C.; Carson, D. D. Cell. Mol. Life Sci. 2009, 66,
3421–3434.
11. Wang, L.; Fuster, M.; Sriramarao, P.; Esko, J. D. Nat. Immunol. 2005, 6, 902–910.
12. Fernandez, C.; Hattan, C. M.; Kerns, R. J. Carbohydr. Res. 2006, 341, 1253–1265.
13. Lander, A. D. Chem. Biol. 1994, 1, 73–78.
4.7. RPIP-HPLC coupled to ESI-MS
HPLC separations prior to mass spectra analysis used the Phe-
nomenex analytical column on either a Surveyor LC system or a
Dionex UltiMate 3000. Column temperature was not controlled;
sample tray was maintained at 4 °C. An autosampler was used to
inject N-cbz O-sulfated aminoglycoside (20 lg); all samples were
dissolved in water. (Pre-dissolving the samples in Buffer A made
no noticeable difference in ion intensity or mass spectra.) Separa-
tion was achieved as described in Section 4.3 for monitoring sulfo-
nation reactions with HPLC. The mass spectra was acquired on a
Thermo LCQ Deca mass spectrometer with ESI ionization and
quadrupole ion trap mass analyzer collecting centroid data in the
negative mode. Mass range for samples with neomycin or apramy-
cin cores was set from 600 to 2000 amu, and 500–2000 amu for
kanamycin-core samples.
14. Lever, R.; Page, C. P. Nat. Rev. Drug Disc. 2002, 1, 140–148.
15. Luscher-Mattli, M. Antiviral Chem. Chemother. 2000, 11, 249–259.
16. Huang, L.; Fernandez, C.; Kerns, R. J. Bioorg. Med. Chem. Lett. 2007, 17, 419–423.
17. Huang, L.; Kerns, R. J. Bioorg. Med. Chem. 2006, 14, 2300–2313.
18. Petitou, M.; Herault, J. P.; Bernat, A.; Driguez, P. A.; Duchaussoy, P.; Lormeau, J.
C.; Herbert, J. M. Nature 1999, 398, 417–422.
4.8. Tuning the ESI-MS for sulfated N-cbz aminoglycosides
19. Huber, C. G.; Oberacher, H. Mass Spectrom. Rev. 2001, 20, 310–343.
20. Korir, A. K.; Larive, C. K. Anal. Bioanal. Chem. 2009, 393, 155–169.
21. Yang, B.; Solakyildirim, K.; Chang, Y.; Linhardt, R. J. Anal. Bioanal. Chem. 2011,
399, 541–557.
22. Kuberan, B.; Lech, M.; Zhang, L. J.; Wu, Z. L. L.; Beeler, D. L.; Rosenberg, R. D. J.
Am. Chem. Soc. 2002, 124, 8707–8718.
To tune the MS, 2 mg/mL N-cbz O-sulfonated neomycin in
water was injected via T-flow with buffer A. The instrument was
focused on the mass corresponding to the doubly charged persulf-
ated ion [Mꢂ2H+TEA]ꢂ2 (m/z = 1038.7). Optimal ion detection was
achieved by setting the spray voltage to 3.00 kV, capillary temp at
203 °C, capillary voltage to ꢂ46 V, increasing the tube lens offset to
25 V and decreasing the sheath flow rate to 60 psi.
23. Thanawiroon, C.; Rice, K. G.; Toida, T.; Linhardt, R. J. J. Biol. Chem. 2004, 279,
2608–2615.
24. Henriksen, J.; Roepstorff, P.; Ringborg, L. H. Carbohydr. Res. 2006, 341, 382–387.
25. Doneanu, C. E.; Chen, W.; Gebler, J. C. Anal. Chem. 2009, 81, 3485–3499.
26. Chai, W.; Luo, J.; Lim, C. K.; Lawson, A. M. Anal. Chem. 1998, 70, 2060–2066.
27. Gunay, N. S.; Tadano-Aritomi, K.; Toida, T.; Ishizuka, I.; Linhardt, R. J. Anal.
Chem. 2003, 75, 3226–3231.
28. Thanawiroon, C.; Linhardt, R. J. J. Chromatogr., A 2003, 1014, 215–223.
29. Zhang, Z. Q.; Xie, J.; Liu, H. Y.; Liu, J.; Linhardt, R. J. Anal. Chem. 2009, 81, 4349–
4355.
30. Meyer, A.; Raba, C.; Fischer, K. Anal. Chem. 2001, 73, 2377–2382.
31. Karamanos, N. K.; Vanky, P.; Tzanakakis, G. N.; Tsegenidis, T.; Hjerpe, A. J.
Chromatogr., A 1997, 765, 169–179.
32. Nakajima, K.; Kitazume, S.; Angata, T.; Fujinawa, R.; Ohtsubo, K.; Miyoshi, E.;
Taniguchi, N. Glycobiology 2010, 20, 865–871.
33. Grondahl, F.; Tveit, H.; Akslen-Hoel, L. K.; Prydz, K. Carbohydr. Res. 2011, 346,
50–57.
34. Solakyildirim, K.; Zhang, Z. Q.; Linhardt, R. J. Anal. Biochem. 2010, 397, 24–28.
35. Jones, C. J.; Membreno, N.; Larive, C. K. J. Chromatogr., A 2010, 1217, 479–488.
36. Apffel, A.; Chakel, J. A.; Fischer, S.; Lichtenwalter, K.; Hancock, W. S. J.
Chromatogr., A 1997, 777, 3–21.
4.9. Calculating degree of sulfation
Degree of sulfation was determined by peak integration of UV
absorbance chromatograms. HPLC separations to determine UV
absorbance were performed on a Shimadzu LC10AT VP series
HPLC pump with PDA detector. Peak area was calculated by
measuring absorbance at the wavelength of maximum absor-
bance at 254–258 nm for each compound. Each peak was as-
signed
a sulfated state based on molecular mass of the
corresponding peak in the total ion chromatogram (TIC). Percent
area was calculated for each degree of sulfation in the UV chro-
matogram and used to assign an average degree of sulfation for
the sample.
37. Apffel, A.; Chakel, J. A.; Fischer, S.; Lichtenwalter, K.; Hancock, W. S. Anal. Chem.
1997, 69, 1320–1325.
38. Irungu, J.; Dalpathado, D. S.; Go, E. P.; Jiang, H.; Ha, H. V.; Bousfield, G. R.;
Desaire, H. Anal. Chem. 2006, 78, 1181–1190.
39. Zhang, G.; Lin, J.; Srinivasan, K.; Kavetskaia, O.; Duncan, J. N. Anal. Chem. 2007,
79, 3416–3424.
5. Role of funding source
40. Nordstrom, A.; Tarkowski, P.; Tarkowska, D.; Dolezal, K.; Astot, C.; Sandberg,
G.; Moritz, T. Anal. Chem. 2004, 76, 2869–2877.
41. Nielsen, T. C.; Rozek, T.; Hopwood, J. J.; Fuller, M. Anal. Biochem. 2010, 402, 113–
120.
Study design, data collection and analysis, writing the report
and decision to publish the work were done independently of
study sponsors.