Journal of the American Chemical Society
Article
́
Gui, J.; Qin, T.; Gutierrez, S.; Giacoboni, J.; Smith, M. W.; Holland,
P. L.; Baran, P. S. J. Am. Chem. Soc. 2017, 139, 2484.
(17) Crossley, S. W. M.; Obradors, C. L.; Martinez, R. M.; Shenvi, R.
A. Chem. Rev. 2016, 116, 8912.
AUTHOR INFORMATION
Corresponding Author
■
(18) (a) Mukaiyama, T.; Isayama, S.; Inoki, S.; Kato, K.; Yamada, T.;
Takai, T. Chem. Lett. 1989, 18, 449. (b) Inoki, S.; Kato, K.; Isayama,
S.; Mukaiyama, T. Chem. Lett. 1990, 19, 1869. (c) Kato, K.;
Mukaiyama, T. Chem. Lett. 1992, 21, 1137.
(19) (a) Lo, J. C.; Yabe, Y.; Baran, P. S. J. Am. Chem. Soc. 2014, 136,
1304. (b) Lo, J. C.; Gui, J.; Yabe, Y.; Pan, C. − M.; Baran, P. S. Nature
2014, 516, 343. (c) Leggans, E. K.; Barker, T. J.; Duncan, K. K.;
Boger, D. L. Org. Lett. 2012, 14, 1428.
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We thank the following individuals for graciously providing the
following starting materials: N. Z. Burns (8a), J. C. Lo (29a),
R. M. Martinez (33a), and C. L. Obradors (36a). Generous
support was provided by the National Science Foundation
(GRFP to S.A.G.) and the National Institutes of Health (R35
GM122606).
(20) Obradors, C. L.; Martinez, R. M.; Shenvi, R. A. J. Am. Chem.
Soc. 2016, 138, 4962.
(21) PhSiH3/EtOH at 60 °C is commonly employed in Fe-HAT
reactions and has been proposed to form Ph(OEt)SiH2 under the
reaction conditions (ref 15c). In our reaction, this combination yields
the product in 31% yield. Instead, PhSiH3/i-PrOH could be used at
room temperature to provide 41% of the desired coupling product
(Table 1). A significant amount of protodehalogenation of the aryl
iodide was seen with PhSiH3/i-PrOH, which is likely the cause for the
deterioration in yield. For a further discussion on silanes, please see
(22) Reactions performed with styrene yielded product, albeit in low
yield (<20%).
(23) Mercer, J. A. M.; Cohen, C. M.; Shuken, S. R.; Wagner, A. M.;
Smith, M. W.; Moss, F. R.; Smith, M. D.; Vahala, R.; Gonzalez-
Martinez, A.; Boxer, S. G.; Burns, N. Z. J. Am. Chem. Soc. 2016, 138,
15845.
(24) (a) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A.
M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.;
Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
(b) Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A.
J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.;
Baran, P. S. Angew. Chem., Int. Ed. 2017, 56, 260.
REFERENCES
■
(1) Lovering, F.; Bikker, J.; Humblet, C. J. Med. Chem. 2009, 52,
6752.
(2) (a) Zultanski, S. L.; Fu, G. C. J. Am. Chem. Soc. 2013, 135, 624.
(b) Wang, X.; Wang, S.; Xue, W.; Gong, H. J. Am. Chem. Soc. 2015,
137, 11562. (c) Primer, D. N.; Molander, G. A. J. Am. Chem. Soc.
2017, 139, 9847. (d) Mei, T. − S.; Patel, H. H.; Sigman, M. S. Nature
2014, 508, 340.
(3) Brown, D. G.; Bostrom, J. J. Med. Chem. 2016, 59, 4443.
(4) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509,
̈
299.
(5) For selected examples, see: (a) Weix, D. J. Acc. Chem. Res. 2015,
48, 1767. (b) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340.
(c) Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2015, 137,
10480.
(6) For selected examples, see: (a) Tellis, J. C.; Primer, D. N.;
Molander, G. A. Science 2014, 345, 433. (b) Jouffroy, M.; Primer, D.
N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475.
(7) For selected examples, see: (a) Cornella, J.; Edwards, J. T.; Qin,
T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.;
Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.
(b) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle, A. G.;
MacMillan, D. W. C. Science 2014, 345, 437.
(8) For selected examples, see: (a) Denmark, S. E.; Cresswell, A. J. J.
Org. Chem. 2013, 78, 12593. (b) Ariki, Z. T.; Maekawa, Y.; Nambo,
M.; Crudden, C. M. J. Am. Chem. Soc. 2018, 140, 78. (c) Miao, W.;
Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018,
140, 880. (d) Merchant, R. R.; Edwards, J. T.; Qin, T.; Kruszyk, M.
M.; Bi, C.; Che, G.; Bao, D. − H.; Qiao, W.; Sun, L.; Collins, M. R.;
Fadeyi, O. O.; Gallego, G. M.; Mousseau, J. J.; Nuhant, P.; Baran, P. S.
Science 2018, 360, 75.
(9) Yan, M.; Lo, J. C.; Edwards, J. T.; Baran, P. S. J. Am. Chem. Soc.
2016, 138, 12692.
(10) Nickel is known to participate in the hydroarylation of olefins
via reductive heck reactions giving the anti-Markovnikov (or linear)
product. For an example of such reactivity see Lu, X.; Xiao, B.; Zhang,
Z.; Gong, T.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Nature Comm. 2016, 7,
article no. 11129.
(11) Naredla, R. R.; Klumpp, D. A. Chem. Rev. 2013, 113, 6905.
(12) For selected examples, see: Ma, X.; Dang, H.; Rose, J. A.;
Rablen, P.; Herzon, S. B. J. Am. Chem. Soc. 2017, 139, 5998.
(13) Green, S. A.; Matos, J. L. M.; Yagi, A.; Shenvi, R. A. J. Am.
Chem. Soc. 2016, 138, 12779.
(25) Chu, C. K.; Liang, Y.; Fu, G. C. J. Am. Chem. Soc. 2016, 138,
6404.
(26) (a) Otani, G.; Yamada, S.−I. Chem. Pharm. Bull. 1973, 21,
2119. (b) Oda, K.; Meyers, A. I. Tetrahedron Lett. 2000, 41, 8193.
(27) Cui, X.; Burgess, K. Chem. Rev. 2005, 105, 3272.
(28) α-Methyl styrene was found to give only traces of product with
mostly dimerization of the α-methyl styrene observed.
(29) Kuhar, M. J.; Carrol, F.; Boja, J. W.; Lewin, A. H.; Abraham, P.
U.S. Patent US20080153870A1, 2008.
(30) Number of commercially available compounds from Reaxys as
of May 31st, 2018.
(31) Joule, J. A.; Mills, K. Heterocyclic Chemistry, 5th ed.; Wiley,
2010.
(32) (a) Bull, J. A.; Croft, R. A.; Davis, O. A.; Doran, R.; Morgan, K.
F. Chem. Rev. 2016, 116, 12150. (b) Wuitschik, G.; Carreira, E. M.;
Wagner, B.; Fischer, H.; Parrilla, I.; Schuler, F.; Rogers-Evans, M.;
Mu
(33) (a) Llona-Minguez, S.; Hoglund, A.; Ghassemian, A.; Desroses,
̈
ller, K. J. Med. Chem. 2010, 53, 3227.
̈
́
́
M.; Calderon-Montano, J. M.; Moron, E. B.; Valerie, N. C. K.; Wita,
̃
̈
̈
E.; Almlof, I.; Koolmeister, T.; Mateus, A.; Cazares-Korner, C.; Sanjiv,
K.; Homan, E.; Loseva, O.; Baranczewski, P.; Darabi, A.; Mehdizadeh,
M.; Fayezi, S.; Jemth, A.−S.; Berglund, U. W.; Sigmundsson, K.;
̈
Lundback, T.; Jensen, A. J.; Artursson, P.; Scobie, M.; Helleday, T. J.
Med. Chem. 2017, 60, 4279. (b) Brodney, M. A. International Patent
WO2006106416A1, 2006. (c) Ruah, S. S., Miller, M. T.; Bear, B.;
McCartney, J.; Grootenhuis, P. D. J. International Patent
WO2007087066A2, 2007. (d) Klar, U.; Schwede, W.; Moeller, C.;
Rotgeri, A.; Bone, W.; International Patent WO2011009534A2, 2011.
(e) Apgar, J. M.; Srasappan, A.; Biftu, T.; Ping, C.; Danqing, F.;
Guidry, E.; Hicks, J.; Kekec, A.; Wei, L.; Wilkeniing, R.; Wu, Z.
International Patent WO2014031515A1, 2014. (f) Scott, J. D.;
Stamford, A. W.; Gilbert, E. J.; Cumming, J. N.; Iserloh, U.; Wang, L.;
Li, W. International patent WO2011044187A1, 2011. (g) Siegrist, R.;
Heidmann, B.; Stamm, S.; Gatfield, J.; Bezencon, O. International
́
(14) Crossley, S. W. M.; Barabe, F.; Shenvi, R. A. J. Am. Chem. Soc.
2014, 136, 16788.
(15) Puxeddu, A.; Costa, G.; Marsich, N. J. Chem. Soc., Dalton Trans.
1980, 9, 1489.
(16) (a) Halpern, J. Pure Appl. Chem. 1986, 58, 575. (b) Waser, J.;
Gaspar, B.; Nambu, H.; Carreira, E. M. J. Am. Chem. Soc. 2006, 128,
11693. (c) Lo, J. C.; Kim, D.; Pan, C. − M.; Edwards, J. T.; Yabe, Y.;
G
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX