Notes
Journal of Natural Products, 2009, Vol. 72, No. 1 181
as eluents. After evaporation of the solvents, three fractions were
obtained: Fr-1 (H2O), Fr-2 (MeOH-H2O, 5:5) (300 mg), and Fr-3
(MeOH) (1.1 g). Fr-3 (1.1 g) was submitted to MPLC [system A: silica
gel (15-40 µm), CHCl3-MeOH-H2O (65:35:10, lower phase)] to give
17 subfractions (1-17). Subfraction 7 (38 mg) was rechromatographed
by MPLC [system B: reversed-phase silica gel RP-18 eluted with
MeOH-H2O (40 f 100%)], giving compounds 1 (4.5 mg) and 2 (4.1
mg). Subfraction 3 (90 mg) was submitted to MPLC (system A), giving
compounds 3 (3.4 mg) and 5 (3.6 mg). Subfraction 2 (97.6 mg) was
submitted to MPLC (System B) yielding 4 (3.9 mg) and 6 (6 mg).
tives prepared in a similar way from standard sugars (Sigma-Aldrich).
This, D-glucose, D-galactose, D-xylose, L-arabinose, and L-rhamnose
were detected for 1 and 2, giving single peaks at 18.5, 21.9, 14.0, 12.0,
and 13.5 min, respectively. In the same manner, D-glucose and
D-galactose were identified for 3 and D-glucose, D-galactose, and
D-xylose for 4.
MTT Cytotoxicity Assay. The bioassay was carried out according
to the method described in ref 14 with two human colorectal cancer
cell lines (HCT 116 and HT-29). Paclitaxel was used as positive control
and exhibited IC50 values of 1.1 nM (HCT 116) and 3.6 nM (HT-29).
Borivilianoside E (1): white, amorphous powder; [R]20 -66.7 (c
D
0.20, MeOH); 1H NMR (pyridine-d5, 600 MHz) and 13C NMR
(pyridine-d5, 150 MHz), see Tables 1 and 2; negative FABMS (glycerol
matrix) m/z 1619 [M - H]-, 1457 [(M - H) - 162]-, 1311 [(M - H)
- 162 - 146]-, 1149 [(M - H) - 162 - 146 - 162]-, 1017 [(M -
H) - 162 - 146 - 162 - 132]-, 885 [(M - H) - 162 - 146 - 162
- 132 - 132]-, 723 [(M - H) - 162 - 146 - 162 - 132 - 132 -
162]-; HRESIMS (positive-ion mode) m/z 1643.7304 [M + Na]+ (calcd
for C73H120O39Na 1643.7310).
Acknowledgment. The authors are thankful to IFCPAR-CEFIPRA,
New Delhi, India, for financial support.
Supporting Information Available: Figure S1 showing FABMS
fragments and main HMBC correlations of 1. This information is
References and Notes
Borivilianoside F (2): white, amorphous powder; [R]20 -70.8 (c
D
0.20, MeOH); 1H NMR (pyridine-d5, 600 MHz) and 13C NMR
(pyridine-d5, 150 MHz), see Tables 1 and 2; negative FABMS (glycerol
matrix) m/z 1617 [M - H]-, 1455 [(M - H) - 162]-, 1309 [(M - H)
- 162 - 146]-, 1147 [(M - H) - 162 - 146 - 162]-, 1015 [(M -
H) - 162 - 146 - 162 - 132]-, 883 [(M - H) - 162 - 146 - 162
- 132 - 132]-, 721 [(M - H) - 162 - 146 - 162 - 132 - 132 -
162]-; HRESIMS (positive-ion mode) m/z 1641.7142 [M + Na]+ (calcd
for C73H118O39Na 1641.7148).
(1) Lacaille-Dubois, M. A. In Handbook of Medicinal Plants; Yaniv Z.,
Bachrach, U., Eds.; The Haworth Medical Press (HMP):New York,
2005; Chapter 19, pp 399-428.
(2) Lacaille-Dubois, M. A. In Studies in Natural Products Chemistry
Series; Atta-ur-Rahman, Ed.; Elsevier Sciences: Amsterdam, 2005;
Vol. 32, pp 209-246.
(3) Kaushik, N. Phytochem. ReV. 2005, 4, 191–196.
(4) Qiu, S. X.; Li, X. C.; Xiong, Y.; Dong, Y.; Chai, H.; Farnsworth,
N. R.; Pezzuto, J. M.; Fong, H. H. S. Planta Med. 2000, 66, 587–
590.
(5) Narasimhan, S.; Govindarajan, R.; Madhavan, V.; Thakur, M.; Dixit,
V. K.; Mehrotra, S.; Madhusudanan, K. P. Planta Med. 2006, 72,
1421–1424.
(6) Acharya, D.; Mitaine-Offer, A. C.; Kaushik, N.; Miyamoto, T.;
Paululat, T.; Lacaille-Dubois, M. A. HelV. Chim. Acta 2008, 91, 2262-
2269.
(7) Mimaki, Y.; Kanmoto, T.; Sashida, Y.; Nishino, A.; Satomi, Y.;
Nishino, H. Phytochemistry 1996, 41, 1405–1410.
(8) Ikeda, T.; Tsumagari, H.; Honbu, T.; Nohara, T. Biol. Pharm. Bull.
2003, 26, 1198–1201.
(9) Avunduk, S.; Mitaine-Offer, A. C.; Alankus-Caliskan, O.; Miyamoto,
T.; Senol, S. G.; Lacaille-Dubois, M. A. J. Nat. Prod. 2008, 71, 141–
145.
(10) Mimaki, Y.; Kanmoto, T.; Kuroda, M.; Sashida, Y.; Satomi, Y.;
Nishino, A.; Nishino, H. Phytochemistry 1996, 42, 1065–1070.
(11) Agrawal, P. K.; Jain, D. C.; Pathak, A. K. Magn. Reson. Chem. 1995,
33, 923–953.
Borivilianoside G (3): white, amorphous powder; [R]20 -57.9 (c
D
0.20, MeOH); 1H NMR (pyridine-d5, 600 MHz) and 13C NMR
(pyridine-d5, 150 MHz), see Tables 1 and 2; negative FABMS (glycerol
matrix) m/z 1077 [M - H]-, 915 [(M - H) - 162]-, 753 [(M - H)
- 162 - 162]-, 591 [(M - H) - 162 - 162 - 162]-, 429 [(M - H)
- 162 - 162 - 162 - 162)-; HRESIMS (positive-ion mode) m/z
1101.5110 [M + Na]+ (calcd for C51H82O24Na 1101.5094).
Borivilianoside H (4): white, amorphous powder; [R]20 -65.1 (c
D
0.20, MeOH); 1H NMR (pyridine-d5, 600 MHz) and 13C NMR
(pyridine-d5, 150 MHz), see Tables 1 and 2; negative FABMS (glycerol
matrix) m/z 1047 [M - H]-, 915 [(M - H) - 132]-, 753 [(M - H)
- 132 - 162]-, 591 [(M - H) - 132 - 162 - 162]-; HRESIMS
(positive-ion mode) m/z 1071.4992 [M + Na]+ (calcd for C50H80O24Na
1071.4988).
Acid Hydrolysis and GC Analysis. Each compound (3 mg) was
hydrolyzed with 2 N aqueous CF3COOH (5 mL) for 3 h at 95 °C.
After extraction with CH2Cl2 (3 × 5 mL), the aqueous layer was
repeatedly evaporated to dryness with MeOH until neutral and then
analyzed by TLC over silica gel (CHCl3-MeOH-H2O, 8:5:1) by
comparison with authentic samples: galactose (Rf 0.21), glucose (Rf
0.23), xylose (Rf 0.47), arabinose (Rf 0.44), and rhamnose (Rf 0.51) for
1 and 2 and galactose (Rf 0.21) and glucose (Rf 0.23) for 3, and galactose
(Rf 0.21), glucose (Rf 0.23), and xylose (Rf 0.47) for 4. The trimethylsilyl
thiazolidine derivatives of the sugar residue of each compound were
prepared and analyzed by GC.16 The absolute configurations were
determined by comparing the retention times with thiazolidine deriva-
(12) Agrawal, P. K. Phytochemistry 1992, 31, 3307–3330.
(13) Brunengo, M. C.; Tombesi, O. L.; Doller, D.; Gros, E. G. Phytochem-
istry 1988, 27, 2943–2945.
(14) Carmichael, J.; De Graff, W. G.; Gazdar, A. F.; Minna, J. D.; Mitchell,
J. B. Cancer Res. 1987, 47, 936–942.
(15) Mitaine-Offer, A. C.; Miyamoto, T.; Semmar, N.; Jay, M.; Lacaille-
Dubois, M. A. Magn. Reson. Chem. 2006, 44, 713–716.
(16) Haddad, M.; Miyamoto, T.; Laurens, V.; Lacaille-Dubois, M. A. J.
Nat. Prod. 2003, 66, 372–377.
NP800559Z