A. K. Ghosh, J.-H. Kim / Tetrahedron Letters 44 (2003) 3967–3969
3969
methyl ester 14 in 80% yield over three steps. This
cis-a,b-unsaturated ester was then subjected to asym-
metric dihydroxylation with AD mix-b at 0°C for 72 h.
This afforded a mixture of diastereomeric cis-1,2-diols
in 72% yield with the major product (15) being the
desired diastereomer (diastereomeric ratio 91:9 was
determined by 1H and 13C NMR analysis). The
diastereomers were separated by silica gel chromatogra-
phy. The depicted stereochemistry of 15 and 16 are
based upon subsequent stereochemical assignment of
lactone 17. It should be noted that catalytic osmylation
of 14 at 23°C for 6 h afforded the cis-1,2-diols 15 and
16 as a 1:1 mixture of diastereomers in 85% yield. Diol
15 was converted to d-lactone 17 as follows. Treatment
of 15 with nBu4N+F− in THF resulted in removal of
TBDMS group and concomitant lactonization. Protec-
tion of the diol functionality with dimethoxypropane
and a catalytic amount of PPTS furnished isopropyli-
dene derivative 17 in 63% over two steps.16 Stereochem-
ical assignment of 17 was based upon NOESY
experiments. The spatial proximity of the protons Ha (l
4.24 ppm), Hb (l 4.58 ppm) and Hc (l 4.44 ppm) is
clearly evident in the NOESY spectrum. Either deriva-
tive of 15 or 17 is now suitable for the synthesis of
peloruside A.
4. Bollag, D. M.; McQueney, P. A.; Zhu, J.; Hensens, O.;
Koupal, L.; Liesch, J.; Goetz, M.; Lazarides, E.; Woods,
C. M. Cancer Res. 1995, 55, 2325.
5. (a) Ghosh, A. K.; Wang, Y. J. Am. Chem. Soc. 2002, 122,
11027; (b) Ghosh, A. K.; Wang, Y.; Kim, J. T. J. Org.
Chem. 2001, 66, 8973; (c) Pryor, D. E.; O’Brate, A.;
Bilcer, G.; Diaz, J. F.; Wang, Y.; Kabaki, M.; Jung, M.
K.; Andreu, J. M.; Ghosh, A. K.; Giannakakou, P.;
Hamel, E. Biochemistry 2002, 41, 9109.
6. Paterson, I.; Di Francesco, M. E.; Kuhn, T. Org. Lett.
2003, 5, 599.
7. Nacro, K.; Baltas, M.; Gorrichon, L. Tetrahedron 1999,
55, 14013.
8. For an excellent review, please see: Kolb, H. C.; Van-
Nieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994,
94, 2483.
9. Optical purity of the corresponding diol (90% ee) was
determined by chiral HPLC analysis (5% 2-propanol/hex-
ane, flow rate 1 mL/min, Rt=5.3 min for the minor
isomer and Rt=6.8 min for the major isomer) using
Daicel Chiracel OD column.
10. Merger, S. D.; Schreiber, S. L. J. Org. Chem. 1994, 59,
7549.
11. (a) Jadhav, P. K.; Bhat, K. S.; Perumaal, T.; Brown, H.
C. J. Org. Chem. 1986, 51, 432; (b) Racgerlaa, U. S.;
Brown, H. C. J. Org. Chem. 1991, 56, 401.
In summary, a stereocontrolled synthesis of the C1ꢀC9
fragment of peloruside A has been achieved. The key
steps are the Sharpless asymmetric dihydroxylation
reaction, Grubbs’ ring-closing olefin metathesis and a
chelation-controlled reduction of a chiral b-alkoxy
ketone to install the syn-1,3-diol functionality stereose-
lectively. Further work toward the total synthesis of
peloruside A is in progress.
12. (a) Ghosh, A. K.; Lei, H. J. Org. Chem. 2002, 67, 8783;
(b) Mori, Y.; Kuhara, M.; Takeuchi, A.; Suzuki, M.
Tetrahedron Lett. 1988, 29, 5419.
13. (a) Ghosh, A. K.; Cappiello, J.; Shin, D. Tetrahedron
Lett. 1998, 39, 4651; (b) Ghosh, A. K.; Liu, C. Chem.
Commun. 1999, 1743; (c) Nicolaou, K. C.; Rodriguez, R.
M.; Mitchell, H. J.; van Delft, F. L. Angew. Chem., Int.
Ed. Engl. 1998, 37, 1874.
14. For an excellent review, see: Grubbs, R. H.; Chang, S.
Tetrahedron 1998, 54, 4413.
15. (a) Ghosh, A. K.; Shin, D.; Mathivanan, P. Chem. Com-
mun. 1999, 1025; (b) Ghosh, A. K.; McKee, S. P.;
Thompson, W. J.; Darke, P. L.; Zugay, J. C. J. Org.
Chem. 1993, 58, 1025.
Acknowledgements
This research work was supported in part by Merck
Research Laboratories and the National Institutes of
Health.
16. All new compounds gave satisfactory spectroscopic and
analytical results. Lactone 17: [h]2D0=+ 43.28 (c 0.67,
1
CHCl3); IR (thin film) 1758 cm−1; H NMR (500 MHz,
CDCl3): l 7.38–7.30 (m, 5H), 4.60–4.51 (m, 3H), 4.44 (m,
1H), 4.24 (d, J=7.7 Hz, 1H), 4.0 (m, 1H), 3.88 (m, 1H),
3.67 (dd, J=9.9, 5 Hz, 1H), 3.54 (dd, J=9.9, 5.7 Hz,
1H), 2.47 (ddd, J=14.2, 8.1, 1.4 Hz, 1H), 2.08 (ddd,
J=14.3, 7.6, 6.2 Hz, 1H), 1.89 (ddd, J=14.3, 6.1, 4.8 Hz,
1H), 1.72 (ddd, J=14.2, 12.1, 8.0), 1.50 (s, 3H), 1.40 (s,
3H), 1.38 (s, 6H); 13C NMR (125 MHz): l 170.6, 138.1,
128.9, 128.3 (2C), 112.1, 109.5, 80.1, 75.3, 74.1, 73.1, 72.9,
72.2, 70.8, 38.6, 34.8, 27.6, 27.3 (2C), 25.7; HRMS (FAB)
m/z calcd for C22H51O7 (M++H): 407.2070; found:
407.2071.
References
1. Harris, C. R.; Danishefsky, S. J. J. Org. Chem. 1999, 64,
8434.
2. West, L. M.; Northcote, P. T. J. Org. Chem. 2000, 65,
445.
3. (a) Hood, K. A.; Backstrom, B. T.; West, L. M.; North-
cote, P. T.; Berridge, M. V.; Miller, J. H. Anti-Cancer
Drug Design 2001, 16, 155; (b) Hood, K. A.; West, L. M.;
Rouwe, B.; Northcote, P. T.; Berridge, M. V.; St.
Wakefield, J.; Miller, J. H. Cancer Res. 2002, 62, 3356.