with the Horwitz group revealed that discodermolide, but
not paclitaxel, possesses another mechanism of tumor cell
growth inhibition, specifically the powerful induction of an
accelerated senescence phenotype,4 which may play a role
in the observed synergy.
Scheme 1
That paclitaxel and discodermolide share a common or
overlapping tubulin binding site was shown early on by
Schreiber et al.1 via displacement studies. However, unlike
the definitive structural information on the Taxol-tubulin
binding site, defined by Horwitz and Orr in an elegant series
of photoaffinity labeling studies beginning in 19945 and sub-
sequently shown by Nogales and co-workers by electron dif-
fraction studies,6 the precise binding site and orientation of
discodermolide at the molecular level remains largely spec-
ulative, despite extensive NMR and computational studies.7a,8
To address this issue, we have prepared five discodermolide
photoaffinity probes possessing benzophenone9 appendages.
At the outset of probe design and synthesis, we set four
goals. First, the labeled probe must possess potent biological
activity similar to the natural product; second, the number
of chemical transformations after incorporation of the label
should be minimal; third, the synthetic transformations must
be efficient; and finally, a single radiolabeled precursor, in
this case a benzophenone moiety possessing tritium, would
be ideal. Based on these criteria, and earlier structure-
activity relationship studies, we selected three sites for
benzophenone incorporation: the C(24) terminus, the C(19)
carbamate, and the C(1)-C(7) lactone.
a mixture of several cross-metathesis adducts. Analysis of
the 1H NMR spectrum revealed that not only was the nascent
olefin generated as a mixture of cis and trans isomers, but
that the C(21)-C(22) cis olefin had also undergone signifi-
cant isomerization.
Seeking to remediate the olefin geometry problem, we
examined the cross-metathesis tactic employing protected
butenediol derivatives 6 and 7,11 as well as R,â-unsaturated
ketone 8 (Scheme 2). Again, only complex mixtures of
isomers resulted.
To attach a benzophenone moiety at the C(24) terminus,
we initially explored an olefin cross-metathesis tactic with
readily available, protected discodermolide congeners (Scheme
1). Unfortunately, treatment of either (+)-3 or (+)-4, late-
stage intermediates in our gram-scale synthesis of discoder-
molide,10 with the benzophenone dimer 5, in the presence
of the Grubbs second-generation ruthenium catalyst, afforded
Scheme 2
(3) (a) Martello, L. A.; McDaid, H. M.; Regl, D. L.; Yang, C. H.; Meng,
D.; Pettus, T. R.; Kaufman, M. D.; Arimoto, H.; Danishefsky, S. J.; Smith,
A. B., III; Horwitz, S. B. Clin. Cancer Res. 2000, 6, 1978-1987. (b) Honore,
S.; Kamath, K.; Braguer, D.; Horwitz, S. B.; Wilson, L.; Briand, C.; Jordan,
M. A. Cancer Res. 2004, 64, 4957-4964.
(4) Klein, L. E.; Freeze, B. S.; Smith, A. B., III; Horwitz, S. B. Cell
Cycle 2005, 4, 501-507.
(5) (a) Rao, S.; Krauss, N. E.; Heerding, J. M.; Swindell, C. S.; Ringel,
I.; Orr, G. A.; Horwitz, S. B. J. Biol. Chem. 1994, 269, 3132-3134. (b)
Rao, S.; Orr, G. A.; Chaudhary, A. G.; Kingston, D. G. I.; Horwitz, S. B.
J. Biol. Chem. 1995, 270, 20235-20238. (c) Rao, S.; He, L.; Chakravarty,
S.; Ojima, I.; Orr, G. A.; Horwitz, S. B. J. Biol. Chem. 1999, 274, 37990-
37994.
(6) (a) Nogales, E.; Wolf, S. G.; Downing, K. H. Nature 1998, 391,
199-203. (b) Nogales, E.; Whittaker, M.; Milligan, R. A.; Downing, K.
H. Cell 1999, 96, 79-88.
Undeterred, we next evaluated 2-butenediol as a cross-
metathesis coupling partner. In the event, treatment of trans-
2-butenediol and alcohol (+)-3 as a mixture (25:1 molar
ratio) with the Grubbs second-generation catalyst in benzene
at 45 °C furnished the desired diol (+)-9 in 71% yield as a
single trans isomer (Scheme 3). A mechanistic rationale for
this stereochemical outcome is under active investigation in
our laboratory.
(7) (a) Martello, L. A.; LaMarche, M. J.; He, L.; Beauchamp, T. J.; Smith,
A. B., III; Horwitz, S. B. Chem. Biol. 2001, 8, 843-855. (b) Burlingame,
M. A.; Shaw, S. J.; Sundermann, K. F.; Zhang, D.; Petryka, J.; Mendoza,
E.; Liu, F.; Myles, D. C.; LaMarche, M. J.; Hirose, T.; Freeze, B. S.; Smith,
A. B., III. Bioorg. Med. Chem. Lett. 2004, 14, 2335-2338. (c) Shaw, S. J.;
Sundermann, K. F.; Burlingame, M. A.; Myles, D. C.; Freeze, B. S.; Xian,
M.; Brouard, I.; Smith, A. B., III. J. Am. Chem. Soc. 2005, 127, 6532-
6533. (d) Smith, A. B., III; Freeze, B. S.; LaMarche, M. J.; Hirose, T.;
Brouard, I.; Xian, M.; Sundermann, K. F.; Shaw, S. J.; Burlingame, M. A.;
Horwitz, S. B.; Myles, D. C. Org. Lett. 2005, 7, 315-318. (e) Smith, A.
B., III; Freeze, B. S.; LaMarche, M. J.; Hirose, T.; Brouard, I.; Rucker, P.
V.; Xian, M.; Sundermann, K. F.; Shaw, S. J.; Burlingame, M. A.; Horwitz,
S. B.; Myles, D. C. Org. Lett. 2005, 7, 311-314.
(10) (a) Smith, A. B., III; Kaufman, M. D.; Beauchamp, T. J.; LaMarche,
M. J.; Arimoto, H. Org. Lett. 1999, 1, 1823-1826. (b) Smith, A. B., III;
Beauchamp, T. J.; LaMarche, M. J.; Kaufman, M. D.; Qiu, Y.; Arimoto,
H.; Jones, D. R.; Kobayashi, K. J. Am. Chem. Soc. 2000, 122, 8654-8664.
(11) Blackwell, H. E.; O’Leary, D. J.; Chatterjee, A. K.; Washenfelder,
R. A.; Bussmann, D. A.; Grubbs, R. H. J. Am. Chem. Soc. 2000, 122, 58-
71.
(8) Monteagudo, E.; Cicero, D. O.; Cornett, B.; Myles, D. C.; Snyder,
J. P. J. Am. Chem. Soc. 2001, 123, 6929-6930.
(9) Dorman, G.; Prestwich, G. D. Biochemistry 1994, 33, 5661-5673.
5200
Org. Lett., Vol. 7, No. 23, 2005