Organic Letters
Letter
S.; Morishima, N.; Shimizu, M.; Yamaguchi, R. N-Alkylation of
Aqueous Ammonia with Alcohols Leading to Primary Amines
Catalyzed by Water-Soluble N-Heterocyclic Carbene Complexes of
Iridium. ChemCatChem 2018, 10, 1993−1997. For selected examples
on other transition-metal catalyzed amination of alcohols with
ammonia, see: (d) Das, K.; Shibuya, R.; Nakahara, Y.; Germain, N.;
Ohshima, T.; Mashima, K. Platinum-Catalyzed Direct Amination of
Allylic Alcohols with Aqueous Ammonia: Selective Synthesis of
Primary Allylamines. Angew. Chem., Int. Ed. 2012, 51, 150−154.
(e) Takanashi, T.; Nakagawa, Y.; Tomishige, K. Amination of alcohols
with ammonia in water over Rh-In catalyst. Chem. Lett. 2014, 43,
822−824. (f) Liu, Y.; Zhou, K.; Shu, H.; Liu, H.; Lou, J.; Guo, D.;
Wei, Z.; Li, X. Switchable synthesis of furfurylamine and
tetrahydrofurfurylamine from furfuryl alcohol over RANEY nickel.
Catal. Sci. Technol. 2017, 7, 4129−4135. (g) Fischer, A.; Maciejewski,
unsaturated imines. Tetrahedron 2011, 67, 1575−1579. (b) Sato,
N.; Jitsuoka, M.; Ishikawa, S.; Nagai, K.; Tsuge, H.; Ando, M.;
Okamoto, O.; Iwaasa, H.; Gomori, A.; Ishihara, A.; Kanatani, A.;
Fukami, T. Discovery of substituted 2,4,4-triarylimidazoline deriva-
tives as potent and selective neuropeptide Y Y5 receptor antagonists.
Bioorg. Med. Chem. Lett. 2009, 19, 1670−1674.
(13) For selected examples, see: (a) Kawahara, N.; Yasukawa, K.;
Asano, Y. New enzymatic methods for the synthesis of primary α-
aminonitriles and unnatural α-amino acids by oxidative cyanation of
primary amines with d-amino acid oxidase from porcine kidney. Green
Chem. 2017, 19, 418−424. (b) Vasu, D.; Fuentes de Arriba, A. L.;
Leitch, J. A.; de Gombert, A.; Dixon, D. J. Primary α-tertiary amine
synthesis via α-C−H functionalization. Chem. Sci. 2019, 10, 3401−
3407.
(14) Smulik, J. A.; Vedejs, E. Improved Reagent for Electrophilic
Amination of Stabilized Carbanions. Org. Lett. 2003, 5, 4187−4190.
(15) For selected examples on ammonia substituted cyanohydrins,
see: (a) Steiger, R. E. α-Aminodiethylacetic acid. Org. Synth. 1942, 22,
13−15. (b) Salaun, J.; Marguerite, J.; Karkour, B. A new and
convenient preparation of 1-aminocyclopropanecarboxylic acid from
acrolein. J. Org. Chem. 1990, 55, 4276−4281. (c) Martins, F. J. C.; van
der Hoven, H.; Viljoen, A. M. Synthesis of exo-3-amino-10-hydroxy-
hexacyclo[10.2.1.02,11.04,10.04,14.09,13]pentadecane-5,7-diene-
endo-3-carboxyclic acid and endo-3-amino-10-hydroxy-hexacyclo-
[10.2.1.02,11.04, 10.04,14.09,13]pentadecane-5,7-diene-exo-3-carbox-
ylic acid. Tetrahedron 2009, 65, 2921−2926. (d) Nesvadba, P.;
M.; Burgi, T.; Mallat, T.; Baiker, A. Cobalt-Catalyzed Amination of
̈
1,3-Propanediol: Effects of Catalyst Promotion and Use of Super-
critical Ammonia as Solvent and Reactant. J. Catal. 1999, 183, 373−
383. (h) He, J.; Yamaguchi, K.; Mizuno, N. Selective Synthesis of
Secondary Amines via N-Alkylation of Primary Amines and Ammonia
with Alcohols by Supported Copper Hydroxide Catalysts. Chem. Lett.
2010, 39, 1182−1183. (i) Shimizu, K.-i.; Kon, K.; Onodera, W.;
Yamazaki, H.; Kondo, J. N. Heterogeneous Ni Catalyst for Direct
Synthesis of Primary Amines from Alcohols and Ammonia. ACS
Catal. 2013, 3, 112−117. For selected examples on biocatalysis-
catalyzed amination of alcohols with ammonia, see: (j) Fuchs, M.;
Tauber, K.; Sattler, J.; Lechner, H.; Pfeffer, J.; Kroutil, W.; Faber, K.
Amination of benzylic and cinnamic alcohols via a biocatalytic,
aerobic, oxidation-transamination cascade. RSC Adv. 2012, 2, 6262−
6265. (k) Sattler, J. H.; Fuchs, M.; Tauber, K.; Mutti, F. G.; Faber, K.;
Pfeffer, J.; Haas, T.; Kroutil, W. Redox Self-Sufficient Biocatalyst
Network for the Amination of Primary Alcohols. Angew. Chem., Int.
Ed. 2012, 51, 9156−9159. (l) Chen, F.-F.; Liu, Y.-Y.; Zheng, G.-W.;
Xu, J.-H. Asymmetric Amination of Secondary Alcohols by using a
Redox-Neutral Two-Enzyme Cascade. ChemCatChem 2015, 7, 3838−
3841.
(10) (a) Stork, G. The stereospecific synthesis of reserpine. Pure
Appl. Chem. 1989, 61, 439−42. (b) Feldman, P. L.; Brackeen, M. F. A
novel route to the 4-anilido-4-(methoxycarbonyl)piperidine class of
analgetics. J. Org. Chem. 1990, 55, 4207−9. (c) Feldman, P. L.; James,
M. K.; Brackeen, M. F.; Bilotta, J. M.; Schuster, S. V.; Lahey, A. P.;
Lutz, M. W.; Johnson, M. R.; Leighton, H. J. Design, synthesis, and
pharmacological evaluation of ultrashort- to long-acting opioid
analgesics. J. Med. Chem. 1991, 34, 2202−6. (d) Wang, L.; Shen, J.;
Tang, Y.; Chen, Y.; Wang, W.; Cai, Z.; Du, Z. Synthetic
improvements in the preparation of clopidogrel. Org. Process Res.
Dev. 2007, 11, 487−489. (e) Zhang, F.-G.; Zhu, X.-Y.; Li, S.; Nie, J.;
Ma, J.-A. Highly enantioselective organocatalytic Strecker reaction of
cyclic N-acyl trifluoromethylketimines: synthesis of anti-HIV drug
DPC 083. Chem. Commun. 2012, 48, 11552−11554.
́
Bugnon, L.; Maire, P.; Novak, P. Synthesis of A Novel
Spirobisnitroxide Polymer and its Evaluation in an Organic Radical
Battery. Chem. Mater. 2010, 22, 783−788. (e) Humphrey, G. R.; Pye,
P. J.; Zhong, Y.-L.; Angelaud, R.; Askin, D.; Belyk, K. M.; Maligres, P.
E.; Mancheno, D. E.; Miller, R. A.; Reamer, R. A.; Weissman, S. A.
Development of a Second-Generation, Highly Efficient Manufacturing
Route for the HIV Integrase Inhibitor Raltegravir Potassium. Org.
Process Res. Dev. 2011, 15, 73−83. (f) Popov, Y. V.; Mokhov, V. M.;
Tankabekyan, N. A.; Safronova, O. Y. Synthesis of 2-amino-2-
cyanoadamantane and its derivatives. Russ. J. Appl. Chem. 2012, 85,
1387−1394.
(16) Li, Z.-F.; Li, Q.; Ren, L.-Q.; Li, Q.-H.; Peng, Y.-G.; Liu, T.-L.
Cyano-borrowing reaction: nickel-catalyzed direct conversion of
cyanohydrins and aldehydes/ketones to β-cyano ketone. Chem. Sci.
2019, 10, 5787−5792.
(11) For selected examples, see: (a) Groeger, H. Catalytic
enantioselective strecker reactions and analogous syntheses. Chem.
Rev. 2003, 103, 2795−2827. (b) Spino, C. Recent developments in
the catalytic asymmetric cyanation of ketimines. Angew. Chem., Int. Ed.
2004, 43, 1764−1766. (c) Friestad, G. K.; Mathies, A. K. Recent
developments in asymmetric catalytic addition to C = N bonds.
Tetrahedron 2007, 63, 2541−2569. (d) Connon, S. J. The catalytic
asymmetric Strecker reaction: ketimines continue to join the fold.
Angew. Chem., Int. Ed. 2008, 47, 1176−1178. (e) Merino, P.;
Marques-Lopez, E.; Tejero, T.; Herrera, R. P. Organocatalyzed
Strecker reactions. Tetrahedron 2009, 65, 1219−1234. (f) Martens, J.
Enantioselective organocatalytic strecker reactions in the synthesis of
α-amino acids. ChemCatChem 2010, 2, 379−381. (g) Wang, J.; Liu,
X.; Feng, X. Asymmetric Strecker Reactions. Chem. Rev. 2011, 111,
6947−6983. (h) Kurono, N.; Ohkuma, T. Catalytic Asymmetric
Cyanation Reactions. ACS Catal. 2016, 6, 989−1023.
(12) For selected examples, see: (a) Palacios, F.; Ochoa de Retana,
́
́
A. M.; Pascual, S.; Fernandez de Troconiz, G. Efficient synthesis of
fluorinated α- and β-amino nitriles from fluoroalkylated α,β-
E
Org. Lett. XXXX, XXX, XXX−XXX