10.1002/anie.201809051
Angewandte Chemie International Edition
COMMUNICATION
2012, 48, 6586–6588; e) S. Biswas, C. Dahlstrand, R. A. Watile, M.
Kalek, F. Himo, J. S. M. Samec, Chem. Eur. J. 2013, 19, 17939–17950;
f) S. Biswas, R. A. Watile, J. S. M. Samec, Chem. Eur. J. 2014, 20,
2159–2163; g) T. Tamia, K. Fujiwara, S. Higashimae, A. Nomoto, A.
Ogawa, Org. Lett. 2016, 8, 2114–2117.
of MeSH. A broad range of olefins could be transformed into the
hydrothiolated adduct applying this protocol. Mechanistic evalua-
tion suggests that a radical pathway is operating, and that the
use of a dimeric Au-complex as a stable radical initiator was
crucial for optimal performance. The role of gold as a radical
initiator is currently being evaluated in our laboratory.
[7]
[8]
For recent examples on the use of Cu, see: a)) S. Ranjit, Z. Duan, P.
Zhang, X. Liu, Org. Lett. 2010, 12, 4134–4136; b) S. N. Riduan, J. Y.
Ying, Y. Zhang, Org. Lett. 2012, 14, 1780–1783; c) I. G. Trostyanskaya,
I. P. Beletskaya, Synlett, 2012, 4, 535–540; d) R. A. Watile, S. Biswas,
J. S. M. Samec, Green Chem. 2013, 15, 3176–3179; e) Y. Yang, R. M.
Rioux, Green Chem. 2014, 16, 3916–3925.
Acknowledgements
For recent examples on the use of Rh, see 5b and: a) Y. Yang, R. M.
Rioux, Chem. Commun, 2011, 47, 6557–6559; b) J. Liu, J. W. Y. Lam,
C. K. W. Jim, J. C. Y. Ng, J. Shi, H. Su, K. F. Yeung, Y. Hong, M. Faisal,
Y. Yu, K. S. Wong, B. Z. Tang, Macromolecules, 2011, 44, 68–79; c) H.
Zhao, J. Peng, M. Cai, Catal. Lett. 2012, 142, 138–142; d) A. D.
Giuseppe, R. Castarlenas, J. J. Pérez-Torrente, M. Crucianelli, V. Polo,
R. Sancho, F. J. Lahoz, L. A. Oro, J. Am. Chem. Soc. 2012, 134, 8171–
8183; e) S. Kankala, S. Nerella, R. Vadde, C. S. Vasam, RSC Adv.
2013, 3, 23582–23588; f) L. Palacios, M. J. Artigas, V. Polo, F. J. Lahoz,
R. Castarlenas, J. J. Pérez-Torrente, L. A. Oro, ACS Catal. 2013, 3,
2910–2919; g) A. B. Pritzius, B. Breit, Angew. Chem. Int. Ed. 2015, 54,
3121–3125; h) G. Kleinhans, G. Guisado-Barrios, D. C. Liles, G. Ber-
trand, D. I. Bezuidenhout, Chem. Commun. 2016, 52, 3504–3507; i) J.
L. Kennemur, G. D. Kortman, K. L. Hull, J. Am. Chem. Soc. 2016, 138,
11914–11919; j) L. Palacios, A. D. Giuseppe, M. J. Artigas, V. Polo, F.
J. Lahoz, R. Castarlenas, J. J. Pérez-Torrente, L. A. Oro, Catal. Sci.
Technol. 2016, 6, 8548–8561; l) I. Strydom, G. Guisado-Barrios, I. Fer-
nández, D. C. Liles, E. Peris, D. I. Bezuidenhout, Chem. Eur. J. 2017,
23, 1393–1401; m) L. Palacios, Y. Meheut, M. Galiana-Cameo, M. J.
Artigas, A. D. Giuseppe, F. J. Lahoz, V. Polo, R. Castarlenas, J. J. Pé-
rez-Torrente, L. A. Oro, Organometallics, 2017, 36, 2198–2207.
D. J. Gorin, F. D. Toste, Nature, 2007, 446, 395–403.
This study was funded by the BioValue SPIR, Strategic Platform
for Innovation and Research on value added products from
biomass, co-funded by The Innovation Fund Denmark, case no:
0603-00522B. We are deeply appreciative of the generous
financial support from Haldor Topsøe A/S, the Danish National
Research Foundation (Grant No. DNRF118 and DNRF93) and
Aarhus University. Finally, we thank Jens Christian Kondrup for
the development of the small two-chamber reactors, and Drs.
Jacob Overgaard, Peter Nørby and Vibeke H. Lauridsen for the
X-ray crystallographic analysis.
Keywords: Hydrothiolation ∙ gold ∙ thioethers ∙ reaction mecha-
nism ∙ radical pathway
[1]
For reviews on transition metal-mediated hydrothiolations, see: a) A.
Ogawa, J. Organomet. Chem. 2000, 611, 464–474; b) T. Kondo, T.-A.
Mitsudo, Chem. Rev. 2000, 100, 3205–3220; c) I. P. Beletskaya, V. P.
Ananikov, Eur. J. Org. 2007, 3431–3444; d) I. P. Beletskaya, V. P.
Ananikov, Chem. Rev. 2011, 111, 1596–1636; e) R. Castarlenas, A. D.
Giuseppe, J. J. Pérez-Torrente, L. A. Oro, Angew. Chem. Int. Ed. 2013,
52, 211–222; f) A. Dondoni, A. Marra, Eur. J. Org. 2014, 3955–3969; g)
N. V. Orlov, ChemistryOpen, 2015, 4, 682–697.
[9]
[10] For some reviews on gold catalysis, see: a) M. Rudolph, A. S. K.
Hashmi, Chem. Soc. Rev. 2012, 41, 2448–2462; b) N. Krause, C. Win-
ter, Chem. Rev. 2011, 111, 1994–2009; c) H. A. Wegner, M. Auzias,
Angew. Chem. Int. Ed. 2011, 50, 8236–8247; d) C. Aubert, L. Fen-
sterbank, P. Garcia, M. Malacria, A. Simonneau, Chem. Rev. 2011, 111,
1954–1993; e) A. Corma, A. Leyva-Pérez, M. J. Sabater, Chem. Rev.
2011, 111, 1657–1712; f) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2010,
49, 5232–5241.
[2]
a) E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem. 2014, 57,
2832–2842; b) K. A. Scott, J. T. Njardarson, Top. Curr. Chem. 2018,
376, 5.
[3]
[4]
H. Kuniyasu, A. Ogawa, K. Sato, I. Ryu, N. Kambe, N. Sonoda, J. Am.
Chem. Soc. 1992, 114, 5902–5903.
[11] W. E. Zeller, Methanethiol, e-EROS Encyclopedia of Reagents for
Organic Synthesis, 2001.
For recent examples on the use of Pd, see: a) T. Mitamura, M. Daitou,
A. Nomoto, A. Ogawa, Bull. Chem. Soc. Jpn. 2011, 84, 413–415; b) V.
P. Ananikov, N. V. Orlov, S. S. Zalessky, I. P. Beletskaya, V. N. Khrus-
talev, K. Morokuma, D. G. Musaev, J. Am. Chem. Soc. 2012, 134,
6637–6649; c) R. Gerber, C. M. Frech, Chem. Eur. J. 2012, 18, 8901–
8905; d) J. Feng, G. Lu, M. Lv, C. Cai, Asian J. Org. Chem. 2014, 3,
77–81; e) E. S. Degtyareva, J. V. Burykina, A. N. Fakhrutdinov, E. G.
Gordeev, V. N. Khrustalev, V. P. Ananikov, ACS Catal. 2015, 5, 7208–
7213; f) H. Ma, X. Ren, X. Zhou, C. Ma, Y. He, G. Huang, Tetrahedron
Lett. 2015, 56, 6022–6029.
[12] For a recent review on the formation of MeSH from DMSO see: a) X.
Wu, K. Natte, Adv. Synth. Catal. 2016, 358, 336–352; b) E. Jones-
Mensah, M. Karki, J. Magolan, Synlett, 2016, 48, 1421–1436.
[13] O. Baldovino-Pantaleón, S. Hernandez-Ortega, D. Morales-Morales,
Adv. Synth. Catal. 2006, 348, 236–242; b) X. Chen, X.-S. Hao, C. E.
Goodhue, J.-Q. Yu, J. Am. Chem. Soc. 2006, 128, 6790–6791; c) M.
Klečka, R. Pohl, J. Čejka, M. Hocek, Org. Biomol. Chem. 2013, 11,
5189–5193; d) M. Majek, A. J. v. Wangelin, Chem. Commun. 2013, 49,
5507–5509; e) X.-M. Wu, J.-M, Lou, G.-B. Yan, Synlett, 2016, 27,
2269–2273.
[5]
For some examples on the use of Ni, see: a) V. P. Ananikov, N. V.
Orlov, I. P. Beletskaya, Organometallics, 2006, 25, 1970–1977; b) D. A.
Malyshev, N. M. Scott, N. Marion, E. D. Stevens, V. P. Ananikov, I. P.
Beletskaya, S. P. Nolan, Organometallics, 2006, 25, 4462–4470; c) V.
P. Ananikov, S. S. Zalesskiy, N. V. Orlov, I. P. Beletskaya, Russ. Chem.
Bull. Int. Ed. 2006, 55, 2109–2113; d) V. P. Ananikov, K. A. Gayduk, N.
V. Orlov, I. P. Beletskaya, V. N. Khrustalev, M. Y. Antipin, Chem. Eur. J.
2010, 16, 2063–2071.
[14] a) P. Hermange, A. T. Lindhardt, R. H. Taaning, K. Bjerglund, D. Lupp,
T. Skrydstrup, J. Am. Chem. Soc. 2011, 133, 6061–6071; b) S. D. Friis,
A. T. Lindhardt, T. Skrydstrup, Acc. Chem. Res. 2016, 49, 594–605.
[15] a) A. Modvig, T. L. Andersen, R. H. Taaning, A. T. Lindhardt, T. Skryds-
trup, J. Org. Chem. 2014, 79, 5861–5868; b) K. T. Neumann, S.
Klimczyk, M. N. Burhardt, B. Bang-Andersen, T. Skrydstrup, A. T. Lind-
hardt, ACS Catal. 2016, 6, 4710–4714; c) M. Flinker, H. Yin, R. W. Juhl,
E. Z. Eikeland, J. Overgaard, D. U. Nielsen, T. Skrydstrup, Angew.
Chem. Int. Ed. 2017, 56, 15910–15915.
[6]
For recent examples on the use of Pd, see: a) A. Corma, C. González-
Arellano, M. Iglesias, F. Sánchez, Appl. Catal. A. 2010, 375, 49–54; b)
Menggenbateer, M. Narsireddy, G. Ferrara, N. Nishina, T. Jin, Y.
Yamamoto, Tetrahedron Lett. 2010, 51, 4627–4629; c) R. J. Mudd, P.
C. Young, J. A. Jordcan-Hore, G. M. Rosair, A.-L. Lee, J. Org. Chem.
2012, 77, 7633–7639; d) S. Biswas, J. S. M. Samec, Chem. Commun.
[16] G. K. Min, K. Bjerglund, S. Kramer, T. M. Gøgsig, A. T. Lindhardt, T.
Skrydstrup, Chem. Eur. J. 2013, 19, 17603–17607.
[17] S. K. Kristensen, E. Z. Eikeland, E. Taarning, A. T. Lindhardt, T.
Skrydstrup, Chem. Sci. 2017, 8, 8094–8105.
This article is protected by copyright. All rights reserved.