A. M. Dunne et al. / Tetrahedron Letters 44 (2003) 2733–2736
2735
Fu¨rstner, A. Angew. Chem. 2000, 112, 3140–3172; Angew.
Chem., Int. Ed. Engl. 2000, 39, 3013–3043; (c) Roy, R.;
Das, S. K. Chem. Commun. 2000, 519–529; (d) Arm-
strong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371–
388; (e) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54,
4413–4696; (f) Ivin, K. J. J. Mol. Catal. A 1998, 133,
1–16; (g) Randall, M. L.; Snapper, M. L. J. Mol. Cat. A,
1998, 133, 29–40; (h) Schuster, M.; Blechert, S. Angew.
Chem. 1997, 109, 2124–2144; Angew. Chem., Int. Ed.
Engl. 1997, 36, 2037–2055.
2. (a) Nguyen, S. T.; Grubbs, R. H.; Ziller, J. J. Am. Chem.
Soc. 1993, 115, 9858–9859; (b) Nolan, S. P.; Huang, J.;
Stevens, E. D.; Petersen, J. J. Am. Chem. Soc. 1999, 121,
2674–2678; (c) Ackermann, L.; Fu¨rstner, A.; Weskamp,
T.; Kohl, F. J.; Herrmann, W. A. Tetrahedron Lett. 1999,
40, 4787–4790; (d) Scholl, M.; Trnka, T. M.; Morgan, J.
P.; Grubbs, R. H. Tetrahedron Lett. 1999, 40, 2247–2250;
(e) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org.
Lett. 1999, 1, 953–956; (f) Garber, S. B.; Kingsbury, J. S.;
Gray, B. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2000,
122, 8168–8179; (g) Gessler, S.; Randl, S.; Blechert, S.
Tetrahedron Lett. 2000, 41, 9973–9976; (h) Wakamatsu,
H.; Blechert, S. Angew. Chem. 2002, 114, 832–834;
Angew. Chem., Int. Ed. Engl. 2002, 41, 794–796; (i)
Wakamatsu, H.; Blechert, S. Angew. Chem. 2002, 114,
2509–2511; Angew. Chem., Int. Ed. Engl. 2002, 41, 2403–
2405.
3. (a) Gessler, S.; Randl, S.; Blechert, S. Synlett 2001,
430–433; (b) Cossy, J.; BouzBouz, S.; Hoveyda, A. H. J.
Organomet. Chem. 2001, 624, 327–332; (c) Imhof, S.;
Randl, S.; Blechert, S. Chem. Commun. 2001, 1692–1693.
4. Casiraghi, G.; Casnati, G.; Puglia, G.; Sartori, G. Syn-
thesis 1980, 124–125.
5. Due to their similar pKa values, repeated attempts to
separate 5 and its corresponding acid non-chromato-
graphically were unsuccessful.
Scheme 4. ROM-CM promoted by 4c.
Table 2. Results of ROM-CM experiments
Substrate
CM Partner Product
4c (mol%)
Yield (%)a
16
17
18
19
16
17
18
19
16
17
18
19
20
20
20
20
21
21
21
21
22
22
22
22
23a,b
24a,b
25a,b
26a,b
27a,b
28a,b
29a,b
30a,b
31a,b
32a,b
33a,b
34a,b
0.3
0.5
0.3
0.4
3
1
1
3
1
72
96
90
82
39
46
50
39
55
72
68
46
0.5
0.5
1
a Refers to isolated yields after chromatography.
6. Use of CD2Cl2 resulted in significant catalyst decomposi-
tion. In C6D6, catalyst degradation in the absence of
added styrene was monitored and found to be insignifi-
cant on the time-scale of the experiments.
7. The steric effect which promotes ligand dissociation
would also be expected to hinder the catalyst deactivating
reassociation back reaction. For a discussion of the
mechanism of olefin metathesis catalysed by 3, see: San-
ford, M. S.; Love, J. A.; Grubbs, R. H. J. Am. Chem.
Soc. 2001, 123, 6543–6554.
8. For recent advances in the use of sulphur-containing
metathesis substrates, see: (a) Gan, Z.; Roy, R. Tetra-
hedron 2000, 56, 1423–1428; (b) Spagnol, G.; Heck, M.-
P.; Nolan, S. P. C.; Mioskowski, C. Org. Lett. 2002, 4,
1767–1770; (c) Smulik, J. A.; Giessert, A. J.; Diver, S. T.
Tetrahedron Lett. 2002, 43, 209-211.
9. (a) Schneider, M. F.; Blechert, S. Angew. Chem. 1996,
108, 479–481; Angew. Chem., Int. Ed. Engl. 1996, 35,
411–413; (b) Schneider, M. F.; Lucas, N.; Velder, J.;
Blechert, S. Angew. Chem. 1997, 109, 257–258; Angew.
Chem., Int. Ed. Engl. 1997, 36, 257–258; (c) Randall, M.
L.; Tallarico, J. A.; Snapper, M. L. J. Am. Chem. Soc.
1995, 117, 9610–9611; (d) Snapper, M. L.; Tallarico, J.
A.; Randall, M. L. J. Am. Chem. Soc. 1997, 119, 1478–
1479; (e) Randl, S.; Connon, S. J.; Blechert, S. Chem.
Commun. 2001, 1796–1797; (f) Lee, C. W.; Choi, T.-L.;
Grubbs, R. H. J. Am. Chem. Soc. 2002, 124, 3224–3225.
was made, as these experiments were designed only to
test the functional group tolerance of 4c in ROM-CM
processes. Less sterically encumbered CM partners 21
and 22 were not as effective as 20; isolated yields of
cross products were reduced due to the ability of 27a,b–
34a,b to participate in metathesis dimerisation and
oligimerisation (as opposed to selective CM) processes
under the reaction conditions.
Nevertheless, it is apparent that phosphine-free catalyst
4c possesses functional group tolerance towards Lewis-
basic potentially chelating functionality in ROM-CM
reactions. In summary, we have developed an efficient
and practical synthetic route to ligand 8, which allows
catalyst 4c to be readily prepared in reasonable quanti-
ties. Reactivity studies have shown that despite display-
ing relatively high rates of exchange with deuterated
ligand 9, 4c is a robust and synthetically useful catalyst
for the ROM-CM of substrates bearing Lewis-basic
chelating atoms.
References
1. For recent olefin metathesis reviews, see: (a) Trnka, T.
M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18–29; (b)