Tota l Syn th esis of Ma cr osp h elid es A, B, a n d E: F ir st Ap p lica tion
of Rin g-Closin g Meta th esis for Ma cr osp h elid e Syn th esis
Takanori Kawaguchi, Nobutaka Funamori, Yuji Matsuya, and Hideo Nemoto*
Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani,
Toyama 930-0194, J apan
nemotoh@ms.toyama-mpu.ac.jp
Received October 1, 2003
A new synthetic route for macrosphelides A, B, and E based on ring-closing metathesis (RCM) was
established. The substrates for RCM could be synthesized starting from commercially available
chiral materials, methyl (S)-lactate and methyl (S)- or (R)-3-hydroxybutyrate, in good overall yields.
In the investigation of the key RCM step, it was found that the steric factor around the reaction
site significantly affected the reaction rate of macrocyclization. A detailed account regarding this
synthetic study is described herein.
In tr od u ction
employed as a macrocyclization method, and no example
including RCM has been seen so far. In a previous
communication,8 we reported the first application of RCM
for the total synthesis of macrosphelides A and B,
demonstrating its efficiency for constructing the 16-
membered macrosphelide skeleton. In this paper, we
describe the full details of this RCM-based synthetic
study and its extension for the synthesis of macrosphelide
E.
Olefin metatheses using metal alkylidene complexes
is a unique and powerful method for C-C bond formation
or cleavage and occupies a greatly significant position in
modern synthetic organic chemistry.1 Among them, ring-
closing metathesis (RCM) has received much attention
for the construction of medium or large rings, and nu-
merous studies on its application for the synthesis of
biologically important molecules have been reported in
the past few years.2 In particular, it has been a promising
method for forming macrocyclic compounds, as seen
representatively in epothilone syntheses.3 As one of our
recent research projects for total synthesis of several
bioactive macrolides, development of a new efficient
synthetic methodology for macrosphelides, which have
a 16-membered trilactone linkage, has been carried out.4
This series of natural products were isolated from Mac-
rosphaeropsis sp. FO-5050 and Periconia byssoides5 and
have been reported to inhibit adhesion of human leuke-
mia HL-60 cells to human-umbilical-vein endothelial cells
with high selectivity5 and, consequently, to be potential
lead compounds for new anti-cancer drugs. Although
many synthetic studies have been reported6 since Omura
and Smith reported the first total synthesis of mac-
rosphelides A and B in 1997,6a in all cases, the macro-
lactonization protocol developed by Yamaguchi et al.7 was
Resu lts a n d Discu ssion
Retr osyn th esis. The approach we envisaged for the
synthesis of macrosphelides A, B, and E is shown in
Scheme 1. Of two olefinic parts in the 16-membered
(5) (a) Hayashi, M.; Kim, Y.-P.; Hiraoka, H.; Natori, M.; Takamatsu,
S.; Kawakubo, T.; Masuma, R.; Komiyama, K.; Omura, S. J . Antibiot.
1995, 48, 1435. (b) Takamatsu, S.; Kim, Y.-P.; Hayashi, M.; Hiraoka,
H.; Natori, M.; Komiyama, K.; Omura, S. J . Antibiot. 1996, 49, 95. (c)
Takamatsu, S.; Hiraoka, H.; Kim, Y.-P.; Hayashi, M.; Natori, M.;
Komiyama, K.; Omura, S. J . Antibiot. 1997, 50, 878. (d) Fukami, A.;
Taniguchi, Y.; Nakamura, T.; Rho, M.-C.; Kawaguchi, K.; Hayashi, M.;
Komiyama, K.; Omura, S. J . Antibiot. 1999, 52, 501. (e) Numata, A.;
Iritani, M.; Yamada, T.; Minoura, K.; Matsumura, E.; Yamori, T.;
Tsuruo, T. Tetrahedron Lett. 1997, 38, 8215. (f) Yamada, T.; Iritani,
M.; Doi, M.; Minoura, K.; Ito, T.; Numata, A. J . Chem. Soc., Perkin
Trans. 1 2001, 3046. (g) Yamada, T.; Iritani, M.; Minoura, K.; Numata,
A.; Kobayashi, Y.; Wang, Y.-G. J . Antibiot. 2002, 55, 147.
(6) (a) Sunazuka, T.; Hirose, T.; Harigaya, Y.; Takamatsu, S.;
Hayashi, M.; Komiyama, K.; Omura, S.; Sprengeler, P. A.; Smith, A.
B., III. J . Am. Chem. Soc. 1997, 119, 10247. (b) Kobayashi, Y.; Kumar,
B. G.; Kurachi, T. Tetrahedron Lett. 2000, 41, 1559. (c) Kobayashi, Y.;
Kumar, B. G.; Kurachi, T.; Acharya, H. P.; Yamazaki, T.; Kitazume,
T. J . Org. Chem. 2001, 66, 2011. (d) Kobayashi, Y.; Acharya, H. P.
Tetrahedron Lett. 2001, 42, 2817. (e) Ono, M.; Nakamura, H.; Konno,
F.; Akita, H. Tetrahedron: Asymmetry 2000, 11, 2753. (f) Nakamura,
H.; Ono, M.; Makino, M.; Akita, H. Heterocycles 2002, 57, 327. (g)
Nakamura, H.; Ono, M.; Shida, Y.; Akita, H. Tetrahedron: Asymmetry
2002, 13, 705. (h) Kobayashi, Y.; Wang, Y.-G. Tetrahedron Lett. 2002,
43, 4381. (i) Ono, M.; Nakamura, H.; Arakawa, S.; Honda, N.; Akita,
H. Chem. Pharm. Bull. 2002, 50, 692. (j) Sharma, G. V. M.; Chandra
Mouli, Ch. Tetrahedron Lett. 2002, 43, 9159. (k) Akita, H.; Nakamura,
H.; Ono, M. Chirality 2003, 15, 352.
(1) For recent reviews on olefin metathesis, see: (a) Fu¨rstner, A.
Topics in Organometallic Chemistry; Springer-Verlag: Berlin, 1998;
Vol. 1. (b) Ivin, K. J .; Mol, J . C. Olefin Metathesis and Metathesis
Polymerization; Academic Press: San Diego, CA, 1997. (c) Trnka, T.
M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18.
(2) For recent reviews on RCM, see: (a) Fu¨rstner, A. Angew. Chem.,
Int. Ed. 2000, 39, 3012. (b) Armstrong, S. K. J . Chem. Soc., Perkin
Trans. 1 1998, 371. (c) Grubbs, R. H.; Chang, S. Tetrahedron 1998,
54, 4413.
(3) Recent report in this field: Rivkin, A.; Yoshimura, F.; Gabarda,
A. E.; Chou, T.-C.; Dong, H.; Tong, W. P.; Danishefsky, S. J . J . Am.
Chem. Soc. 2003, 125, 2899. Also, a comprehensive review can be seen
in ref 1a, pp 75-92.
(4) Matsuya, Y.; Kawaguchi, T.; Nemoto, H.; Nozaki, H.; Hamada,
H. Heterocycles 2003, 59, 481.
(7) Inanaga, J .; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M.
Bull. Chem. Soc. J pn. 1979, 52, 1989.
(8) Matsuya, Y.; Kawaguchi, T.; Nemoto, H. Org. Lett. 2003, 5, 2939.
10.1021/jo035435u CCC: $27.50 © 2004 American Chemical Society
Published on Web 12/25/2003
J . Org. Chem. 2004, 69, 505-509
505