ARTICLES
n-octane (0.1 ml, 0.615 mmol) and mesitylene (0.39 ml, 6.47 mmol). p-xylene
(0.01 ml, internal standard) was added. This solution (0.5 ml) was then transferred
to a Schlenk flask (approximately 60 ml total volume) containing a micro stir bar
fitted with a Kontes valve and an o-ring joint. The contents were cooled under liquid
nitrogen and the solution was degassed via freeze-pump-thaw cycles and then
brought to room temperature and charged with propylene (800 torr). The flask was
then immersed in an oil bath maintained at 165 8C while the solution was stirred.
After heating for 24 h, the flask was removed from the oil bath and brought to room
temperature. The solution was then cooled in liquid nitrogen and the flask was
evacuated and transferred to the glove box. The reaction mixture was analysed by gas
chromatography. Fresh propylene was charged into the flask as above. The cycle
was repeated until there was no significant change in the concentration of the
products (as determined by gas chromatography).
26. Foley, N. A., Lee, J. P., Ke, Z., Gunnoe, T. B. & Cundari, T. R. Ru(II) catalysts
supported by hydridotris(pyrazolyl)borate for the hydroarylation of olefins:
reaction scope, mechanistic studies, and guides for the development of improved
catalysts. Acc. Chem. Res. 42, 585–597 (2009).
27. McKeown, B. A., Foley, N. A., Lee, J. P. & Gunnoe, T. B. Hydroarylation of
unactivated olefins catalyzed by platinum(II) complexes. Organometallics 27,
4031–4033 (2008).
28. Luedtke, A. T. & Goldberg, K. I. Intermolecular hydroarylation of unactivated
olefins catalyzed by homogeneous platinum complexes. Angew. Chem. Int. Ed.
47, 7694–7696 (2008).
29. Peng, Y., Ma, X. & Schobert, H. H. Thermopyrolysis mechanism of
n-alkylbenzene: experiment and molecular simulation. Prepr. Am. Chem. Soc.
Div. Pet. Chem. 43, 368–372 (1998).
30. Eapen, K. C., Snyder, C. E., Jr., Gschwender, L., Dua, S. S. & Tamborski, C.
Poly-n-alkylbenzene compounds. A class of thermally stable and wide liquid
range fluids. Prepr. Am. Chem. Soc. Div. Pet. Chem. 29, 1053–1058 (1984).
31. Huang, Z. et al. Efficient heterogeneous dual catalyst systems for alkane
metathesis. Adv. Synth. Catal. 352, 125–135 (2010).
32. Huang, Z. et al. Highly active and recyclable heterogeneous iridium pincer
catalysts for transfer dehydrogenation of alkanes. Adv. Synth. Catal. 351,
188–206 (2009).
33. Dobereiner, G. E. & Crabtree, R. H. Dehydrogenation as a substrate-activating
strategy in homogeneous transition-metal catalysis. Chem. Rev. 110,
681–703 (2010).
34. Gupta, M., Hagen, C., Flesher, R. J., Kaska, W. C. & Jensen, C. M. A highly active
alkane dehydrogenation catalyst: stabilization of dihydrido Rh and Ir complexes
by a P-C-P pincer ligand. Chem. Commun. 2083–2084 (1996).
35. Gupta, M., Hagen, C., Kaska, W. C., Cramer, R. E. & Jensen, C. M. Catalytic
dehydrogenation of cycloalkanes to arenes by a dihydrido iridium P-C-P pincer
complex. J. Am. Chem. Soc. 119, 840–841 (1997).
36. Gupta, M., Kaska, W. C. & Jensen, C. M. Catalytic dehydrogenation of
ethylbenzene and THF by a dihydrido iridium P-C-P pincer complex. Chem.
Commun. 461–462 (1997).
37. Xu, W. et al. Thermochemical alkane dehydrogenation catalyzed in solution
without the use of a hydrogen acceptor. Chem. Commun. 2273–2274 (1997).
38. Liu, F., Pak, E. B., Singh, B., Jensen, C. M. & Goldman, A. S. Dehydrogenation of
n-alkanes catalyzed by iridium ‘pincer’ complexes. regioselective formation of
alpha-olefins. J. Am. Chem. Soc. 121, 4086–4087 (1999).
39. Liu, F. & Goldman, A. S. Efficient thermochemical alkane dehydrogenation and
isomerization catalyzed by an iridium pincer complex. Chem. Commun.
655–656 (1999).
40. Zhu, K., Achord, P. D., Zhang, X., Krogh-Jespersen, K. & Goldman, A. S. Highly
effective pincer-ligated iridium catalysts for alkane dehydrogenation. DFT
calculations of relevant thermodynamic, kinetic, and spectroscopic properties.
J. Am. Chem. Soc. 126, 13044–13053 (2004).
Received 8 July 2010; accepted 11 November 2010;
published online 19 December 2010
References
1. Wittcoff, H. A., Reuben, B. G. & Plotkin, J. S. Industrial Organic Chemicals
2nd edn (Wiley–IEEE, 2005).
2. Annual Energy Outlook 2010 With Projections to 2035 (US Energy Information
3. Rueping, M. & Nachtsheim, B. J. A review of new developments in the Friedel-
Crafts alkylation. From green chemistry to asymmetric catalysis. Beilstein J. Org.
Chem. 6, No 6 (2010).
4. Olah, G. A., Reddy, V. P. & Prakash, G. K. S. in Kirk-Othmer Encyclopedia of
Chemical Technology 5th edn, vol 12, 159–199 (Wiley, 2005).
5. Kocal, J. A., Vora, B. V. & Imai, T. Production of linear alkylbenzenes. Appl.
Catal. A 221, 295–301 (2001).
6. Vora, B. V., Pujado, P. R., Imai, T. & Fritsch, T. R. Recent advances in the
production of detergent olefins and linear alkylbenzenes. Tenside Surfact. Det.
28, 287–294 (1991).
7. Perego, C. & Ingallina, P. Recent advances in the industrial alkylation of
aromatics: new catalysts and new processes. Catal.Today 73, 3–22 (2002).
8. Perego, C. & Ingallina, P. Combining alkylation and transalkylation for alkyl
aromatic production. Green Chem. 6, 274–279 (2004).
9. Dry, M. E. Present and future applications of the Fischer-Tropsch process. Appl.
Catal. A 276, 1–3 (2004).
10. Dry, M. E. The Fischer-Tropsch process: 1950–2000 Catal. Today 71,
227–241 (2002).
ˇ
ˇ
´
´
11. Smieskova, A., Rojasova, E., Hudec, P. & Sabo, L. Aromatization of light alkanes
over ZSM-5 catalysts. Influence of the particle properties of the zeolite. Appl.
Catal. A 268, 235–240 (2004).
12. Davis, B. H. Alkane dehydrocyclization mechanism. Catal. Today 53,
443–516 (1999).
13. Meriaudeau, P. & Naccache, C. Dehydrocyclization of alkanes over zeolite-
supported metal catalysts: monofunctional or bifunctional route. Catal. Rev. Sci.
Eng. 39, 5–48 (1997).
14. Davis, R. J. Aromatization on zeolite L-supported Pt clusters. Heterogen. Chem.
Rev. 1, 41–53 (1994).
15. Arata, K., Hino, M. & Matsuhashi, H. Solid catalysts treated with anions. XXI.
Zirconia-supported chromium catalyst for dehydrocyclization of hexane to
benzene. Appl. Catal. A 100, 19–26 (1993).
16. Spitsyn, V. I., Pirogova, G. N., Korosteleva, R. I. & Kalinina, G. E. Aromatization
of hexane and heptane on technetium catalysts. Doklady Akademii Nauk SSSR
298, 149–151 [Phys. Chem.] (1988).
17. Hino, M. & Arata, K. Solid catalysts treated with anions. Dehydrocyclization of
hexane to benzene over zirconia-supported chromia. J. Chem. Soc. Chem.
Commun. 1355–1356 (1987).
18. Isagulyants, G. V., Sterligov, O. D., Barkova, A. P., Mashinskii, V. I. &
Kugucheva, E. E. Effect of modification of alumina-platinum catalysts on the
composition of arenes formed in the process of dehydrogenation of higher
n-paraffins. Neftekhimiya 27, 357–362 (1987).
19. Szebenyi, I. & Szechy, G. Acta. Chim. Hung. 98, 115 (1978).
20. Gairbekov, T. M., Takaeva, M. I., Khadzhiev, S. N. & Manovyan, A. K. Cracking
and aromatization of C6–10 n-alkanes and n-alkenes by a zeolite-containing
catalyst. J. Appl. Chem. USSR 64, 2396–2400 (1991).
41. Biswas, S. et al. in Abstracts of Papers, 235th ACS National Meeting, New Orleans,
LA, United States INOR-302 (2008).
42. Haenel, M. W. et al. Thermally stable homogeneous catalysts for alkane
dehydrogenation. Angew. Chem. Int. Ed. 40, 3596–3600 (2001).
43. Romero, P. E., Whited, M. T. & Grubbs, R. H. Multiple C-H activations of
methyl tert-butyl ether at pincer iridium complexes: synthesis and thermolysis of
Ir(I) Fischer carbenes. Organometallics 27, 3422–3429 (2008).
44. Doledec, G. & Commereuc, D. Synthesis and properties of homogeneous
models of the Re2O7/Al2O3 metathesis catalyst. J. Mol. Cat. A 161,
125–140 (2000).
45. Jacobson, B. M., Arvanitis, G. M., Eliasen, C. A. & Mitelman, R. Ene reactions of
conjugated dienes. 2. Dependence of rate on degree of hydrogen removed and s-
cis or s-trans diene character. J. Org. Chem. 50, 194–201 (1985).
46. Garg, N. & Lee, T. R. Regioselective bromomethylation of 1,2-dialkylbenzenes.
Synlett 310–312 (1998).
Acknowledgements
The authors are grateful to the National Science Foundation (grant no. CHE-0650456) for
financial support for this work through the Center for Enabling New Technologies
through Catalysis (CENTC).
Author contributions
R.A., B.P., M.F., W.S., M.B. and A.S.G. conceived and designed the experiments; R.A.,
B.P., M.F. and C.S. performed the experiments; R.A., B.P., M.F., C.S., M.B. and A.S.G.
co-wrote the paper.
21. Komarewsky, V. I. & Riesz, C. H. Aromatization of octane and decane in the
presence of nickel-alumina catalyst. J. Am. Chem. Soc. 61, 2524–2525 (1939).
22. Vaisberg, K. S., Zhorov, Y. M., Panchenkov, G. M. & Rudyk, L. G. Formation of
isomers of aromatic hydrocarbons during the dehydrocyclization of n-decane.
Zh. Fiz. Khim. 44, 2630 (1970).
23. Shell. Dehydrocyclization of paraffins. NL patent 6715757 (1968).
24. Matsumoto, T., Taube, D. J., Periana, R. A., Taube, H. & Yoshida, H. Anti-
Markovnikov olefin arylation catalyzed by an iridium complex. J. Am. Chem. Soc.
122, 7414–7415 (2000).
25. Oxgaard, J., Periana, R. A. & Goddard, W. A., III. Mechanistic analysis of
hydroarylation catalysts. J. Am. Chem. Soc. 126, 11658–11665 (2004).
Additional information
171
© 2011 Macmillan Publishers Limited. All rights reserved.