4
4.
5.
Kantor, T. G. Pharmacotherapy. 1986, 6, 93-103.
Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venturello,
P. Molecules. 2013, 18, 1188-1213.
acids, we sought to establish a proof-of-concept by exploring the
utility of this protocol in the modular synthesis of
pharmaceutically important Phenstatin scaffolds. We selected the
spindle poison, Phenstatin, as it has been found to inhibit tubulin
polymerization and tumor cell growth activities.15
6.
7.
Bykov, V. V.; Korolev, D. N.; Bumagin, N. A. Russ. Chem. Bull.
1997, 46, 1631-1632.
(a) Frost, C. G.; Wadsworth, K. J. Chem. Commun. 2001, 2316-
2317. (b) Kakino, R.; Yasumi, S.; Shimizu, I.; Yamamoto, A. Bull.
Chem. Soc. Jpn. 2002, 75, 137-148. (c) Kakino, R.; Yasumi, S.;
Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn. 2002, 75, 1333-
1345. (d) Gooßen, L. J.; Ghosh, K. Angew. Chem. 2001, 113,
3566. (Angew. Chem., Int. Ed)., 2001, 40, 3458-3460; (e) Xin, B.;
Zhang, Y.; Cheng, K. J. Org. Chem. 2006, 71, 5725-5731. (f)
Shen, X. B.; Gao, T. T.; Lu, J. M.; Shao, L. X. Appl. Organomet.
Chem. 2011, 25, 497-501. (g) Yu, A.; Shen, L.; Cui, X.; Peng, D.;
Wu, Y. Tetrahedron. 2012, 68, 2283-2288.
(a) Kakino, R.; Shimizu, I.; Yamamoto, A. Bull. Chem. Soc. Jpn.
2001, 74, 371-376. (b) Tatamidani, H.; Yokota, K.; Kakiuchi, F.;
Chatani, N. J. Org. Chem. 2004, 69, 5615-5621. (c) Tatamidani,
H.; Kakiuchi, F.; Chatani, N. Org. Lett. 2004, 6, 3597-3599.
(a) Gooßen, L. J.; Ghosh, K. Chem. Commun. 2001, 2084-2085.
(b) Gooßen, L. J.; Ghosh, K. Eur. J. Org. Chem. 2002, 3254-3267.
(c) Kwon, Y. B.; Choi, B. R.; Lee, S. H.; Seo, J.; Yoon, C. M.
Bull. Korean Chem. Soc. 2010, 31, 2672-2674.
O
O
20 mol % CuI
5 mol % Ag2CO3
O
O
B(OH)2
O
O
S
+
120 oC, DMF
24 h
O
O
69%
5a
Naphthyl Phenstatin
Scheme 2 Application: A modular synthesis of Naphthyl
Phenstatin.
8.
9.
Subsequently, we attempted to upscale the synthesis of
benzophenone to the gram scale, affording a 58% yield of
benzophenone. Both of these investigations demonstrate that our
protocol has pharmaceutically applicability at the level of both
process and medicinal chemistry.
10. (a) Liebeskind, L. S.; Srogl, J. J. Am. Chem. Soc. 2000, 122,
11260-11261. (b) Savarin, C.; Srogl, J.; Liebeskind, L. S. Org.
Lett. 2000, 2, 3229-3231. (c) Villalobos, J. M.; Srogl, J.;
Liebeskind, L. S. J. Am. Chem. Soc. 2007, 129, 15734-15735. (d)
Zhang, Z.; Lindale, M.G.; Liebeskind, L. S. J. Am. Chem. Soc.
2011, 133, 6403-6410; (e) Pan, F.; Shi, Z.-J. ACS. Catal., 2014, 4,
280-288.
O
B(OH)2
O
20 mol % CuI
5 mol % Ag2CO3
S
+
120 oC DMF; 8 h
58%
5 mmol
7.5 mmol
Scheme 3 Gram scale synthesis
11. (a) Wang, L.; He, W.; Yu, Z. Chem. Soc. Rev. 2013, 42, 599. (b)
Oviedo, A.; Arevalo, A.; Alamo, M. F.; Garcia, J. J.
Organometallics. 2012, 31, 4039-4045.
3. Conclusions
In summary, here we report the first simple copper/silver salt-
catalyzed cross couplings of thiol esters with arylboronic acids
and potassium aryltrifluoroborates. Notably, this silver-catalyzed
synthesis of biaryl ketones proceeds efficiently, and is the first
documented approach utilizing this method. Moreover, this
versatile method is unprecedented as it accommodates a wide
variety of functionally diverse aryl-thiol esters (and varying
12. General procedure for the synthesis of Biaryl ketones from
thiolester: Thiolester (0.25 mmol), arylboronic acids (0.375
mmol), CuI (20 mol %, 10 mg), Ag2CO3 (5 mol %, 4 mg) and
DMF (3 ml) were taken in a 25ml round bottomed flask. The
reaction mixture was heated at 120 °C for 8-24 h. The reaction
monitored using TLC. Upon completion, the reaction mixture was
diluted with water and extracted with DCM (3 x 10 ml). The
combined organic layer was dried over anhydrous sodium sulphate
and concentrated under reduced pressure. The resulting ketone
was purified was purified using silica gel column chromatography
(EtOAc and petroleum ether 60-80 ºC).
–SPh
moieties),
arylboronic
acids,
and
potassium
aryltrifluoroborate analogues, enabling the facile synthesis of
biaryl ketones in high yield. Sensitive functional groups like-
CHO, -COMe, -COOMe are well tolerated under this condition.
Importantly, our operationally simple method was successfully
applied at the gram-scale and in the synthesis of a naphthyl
Phenstatin analogue, a potent spindle poison. Studies to expand
this copper/silver-catalyzed synthesis to other reactions, and to
elucidate its actual mechanistic pathway, are ongoing in our
laboratory and will be reported in due course.
13. Bell, R. A.; Kramer, J. R. Environ. Toxicol. Chem. 1999, 18, 9-22.
14. King, A. E.; Brunold, T. C.; Stahl, S. S. J. Am. Chem. Soc. 2009,
131, 5044-5045.
15. (a) A´lvarez, C.; A´lvarez, R.; Corchete, P.; Melero, C. P.; Pela´ez,
R.; Medarde, M. Bioorg. Med. Chem. Lett. 2007, 17, 3417-3420.
(b) A´lvarez, C.; A´lvarez, R.; Corchete, P.; Melero, C. P.;
Pela´ez, R.; Medarde, M. Bioorg. Med. Chem. Lett. 2008, 16,
8999-9008.
Acknowledgements
P. Ghosh is thankful to UGC for his fellowship.
References and notes
1. (a) Maeyama, K.; Yamashita, K.; Saito, H.; Aikawa, S.; Yoshida,
Y. Polym. J. 2012, 44, 315-320. (b) Chan, C. Y. K.; Zhao, Z. J.;
Lam, J. W. Y.; Liu, J. Z.; Chen, S. M.; Lu, P.; Mahtab. F.; Chen,
X. J.; Sung, H. H. Y.; Kwok, H. S.; Ma, Y. G.; Williams, I. D.;
Wong, K. S.; Tang, B. Z. Adv. Funct. Mater. 2012, 22, 378-389.
(c) Wen, A.; Wang, Z.; Hang, T.; Jia, Y.; Zhang, T.; Wu, Y.; Gao,
X.; Yang, Z. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci.
2007, 856, 348-352. (d) Zhao, W. L.; Carreira, E. M.; Org. Lett.
2006, 8, 99-102. (e) Ong, A. L.; Kamaruddin, A. H.; Bhatia, S.
Process Biochem. 2005, 40, 3526-3535. (f) Bosca, F.; Miranda,
M. A.; J. Photochem. Photobiol. B, 1998, 43, 1-26. (g) De Kimpe,
N., Keppens, M.; Froncg, G. Chem. Commun. 1996, 635-636.
2.
Jeong, E. J.; Liu, Y.; Lin, H.; Hu, M. Drug Metab. Dispos. 2005,
33, 785-794.
3. Lindhardt, A. T.; Simmonsen, R.; Taaning, R. H.; Gøgsig, T. M.;
Nilsson, G. N.; Stenhagen, G.; Elmore, C. S.; Skrydstrup, T. J.
Labelled Compd. Radiopharm. 2012, 55, 411-418.