2308
I. Devillers et al. / Bioorg. Med. Chem. Lett. 11 (2001) 2305–2309
C-6, in particular a phenol moiety, reinforces this prop-
erty, while the R3 substituent at position C-2 seems to
play a moderate role. The C-8 position, substituted with
a benzyl group (R2=Bz) in the natural CLZ but
unsubstituted in the synthetic derivatives 3a–l
(R2=H), could be used for the anchorage of mole-
cular fragments susceptible to improve the biodis-
ponibility.
22. Nakamura, H.; Takeuchi, D.; Murai, A. Synlett 1995,
1227.
23. Feutrill, G. I.; Merrington, R. N. Aust. J. Chem. 1972, 25,
1719.
24. Hirano, T.; Negishi, R.; Yamaguchi, M.; Chen, F. Q.;
Ohmiya, Y.; Tsuji, F. I.; Ohashi, M. Tetrahedron 1997, 53,
12903.
25. Typical procedures for the preparation of compounds 3:
Method A (R3=Me, Ph): to a 0.5 M solution of 1 (1 equiv)
and methyl- or phenylglyoxal 2 (1.5 equiv) in ethanol, was
added aqueous HCl (37%, 3.6 equiv). The mixture was heated
under argon atmosphere for 4 h at 80 ꢁC, then concentrated in
vacuum. The residue was dissolved in cold methanol and left
overnight at ꢀ18 ꢁC to crystallize. The solid was filtered off
and washed several times with cold methanol, ethyl acetate
and ether. Method B (R3=CH2Ph): to a 0.25 M solution of 1
(1 equiv) and benzylglyoxal 2 (diethyl acetal, 1.3 equiv) in
dioxane–water (2:1, v/v), was added aqueous HCl (37%, 10
equiv). The mixture was heated under argon atmosphere for
4 h at reflux, then concentrated in vacuum. The residue, dis-
solved in methanol, was precipitated by addition of cold ether.
26. Usami, K.; Isobe, M. Tetrahedron 1996, 52, 12061.
27. Lucas, M.; Solano, F. Anal. Biochem. 1992, 206, 273.
28. Teranishi, K.; Shimomura, O. Anal. Biochem. 1997, 249,
37.
Acknowledgements
This work was supported by the Fonds National de la
Recherche Scientifique (FNRS, Belgium) and the Wal-
loon Government (Convention no. 9713664). I.D. and
B. de W. are fellows of the Fonds pour la Formation a
la Recherche dans l’Industrie et l’Agriculture (FRIA,
Belgium). J.-F.R., G.D. and J.M.-B. are senior research
associates of FNRS.
References and Notes
29. Gotoh, N.; Niki, E. Methods Enzymol. 1994, 233, 154.
30. Typical procedure for the reaction with superoxide anion:
hypoxanthine (HX; first dissolved in 1 N NaOH), xanthine
oxidase (XOD), Trolox (6-OH-2,5,7,8-tetramethylchroman-2-
carboxylic acid; first solubilized in DMSO), and albumin were
purchased from Sigma-Aldrich. All the solutions were made at
25 ꢁC in 50 mM Tris–HCl buffer (pH 7.8) containing EDTA
(0.1 mM). The final concentrations of HX and XOD were 500
mM and 8.25 U/L, respectively. Albumin was added at a final
concentration of 15 mg/L to minimize the inactivation of
XOD. During the stationary phase of the reaction, the light
yields [relative luminescence units (RLU)] were recorded for
200 s, in 96-well plates, with a Microlumat LB96P6 lumin-
ometer (Berthold Inc., Wildbad, Germany). Each well con-
tains a total volume of 200 mL after addition of HX, that is 40
mL of the competitor (25 mM), 40 mL of 3 (from 25 to 250 mM),
15 mL of XOD, 55 mL of buffer, and 50 mL of HX. Back-
ground chemiluminescence (before HX addition) was sub-
tracted from the luminescence signal. Competitive quenching
1. Morrissey, P. A.; O’ Brien, N. M. Int. Dairy J. 1998, 8, 463.
2. Gordon, M. H. Nat. Prod. Rep. 1996, 265.
3. Hollan, S. Haematologia 1995, 26, 177.
4. Gille, G.; Sigler, K. Folia Microbiol. 1995, 40, 131.
5. Nakao, K.; Shimizu, R.; Kubota, H.; Yasuhara, M.;
Hashimura, Y.; Suzuki, T.; Fujita, T.; Ohmizu, H. Bioorg.
Med. Chem. 1998, 6, 849.
6. Parmar, V. S.; Kumar, A.; Prasad, A. K.; Singh, S. K.;
Kumar, N.; Mukherjee, S.; Raj, H. G.; Goel, S.; Errington,
W.; Puar, M. S. Bioorg. Med. Chem. 1999, 7, 1425.
7. Dorey, G.; Lockhart, B.; Lestage, P.; Casara, P. Bioorg.
Med. Chem. Lett. 2000, 10, 935.
8. Rees, J. F.; de Wergifosse, B.; Noiset, O.; Dubuisson, M.;
Janssens, B.; Thompson, E. M. J. Exp. Biol. 1998, 201, 1211.
9. de Wergifosse, B.; Noiset, O.; Dubuisson, M.; Marchand-
Brynaert, J.; Baguet, F.; Rees, J.-F. In Bioluminescence and
Chemiluminescence; Roda, A., Kricka, L., Stanley, P., Eds.;
Wiley: New York, 1999; p 396.
ꢂ
ꢀ
experiments towards O2 were performed between lumines-
cent compounds (CLZ, MeO–CLZ; 5 mM) and increasing
TroloxR concentrations (from 0 to 60 mM). Rate constants
10. Dubuisson, M.; de Wergifosse, B.; Trouet, A.; Baguet, F.;
Marchand-Brynaert, J.; Rees, J.-F. Biochem. Pharmacol. 2000,
60, 471.
ꢂ
ꢀ
of non-luminescent compounds (3a–l) towards O2
were
11. Ohmiya, Y.; Hirano, T. Chem. Biol. 1996, 3, 337.
12. Jones, K.; Hibbert, F.; Keenan, M. Trends Biotechnol.
1999, 17, 477.
13. Head, J.-F.; Inouye, S.; Teranishi, K.; Shimomura, O.
Nature 2000, 405, 372.
14. Kuse, M.; Isobe, M. Tetrahedron 2000, 56, 2629, and
references cited therein.
15. Nakamura, H.; Wu, C.; Inouye, S.; Murai, A. J. Am.
Chem. Soc. 2001, 123, 1523.
16. Devillers, I.; de Wergifosse, B.; Bruneau, M.-P.; Tinant,
B.; Declercq, J.-P.; Touillaux, R.; Rees, J.-F.; Marchand-Bry-
naert, J. J. Chem. Soc., Perkin Trans. 2 1999, 1481.
17. Gonzalez-Trueba, G.; Paradisi, C.; Zoratti, M. Anal. Bio-
chem. 1996, 240, 308, and references cited therein.
18. Teranishi, K.; Goto, T. Bull. Chem. Soc. Jpn. 1990, 63,
3132.
19. Keenan, M.; Jones, K.; Hibbert, F. J. Chem. Soc., Chem.
Commun. 1997, 323, and references cited therein.
20. Hirano, T.; Nishibuchi, S.; Yoneda, M.; Tsujimoto, K.;
Ohashi, M. Tetrahedron 1993, 49, 9267.
obtained by competition between them and MeO–CLZ. Plotting
[MeO–CLZ]/[3] versus the Io=Ic values allows the determina-
tion of kc=ki from the slope of the linear relationship linking
these parameters. Each experiment was performed six times.
31. Gotoh, N.; Niki, E. Chem. Lett. 1990, 1475.
32. Suzuki, N.; Suetsuna, K.; Mashiko, S.; Yoda, B.;
Nomoto, T.; Toya, Y.; Inaba, H.; Goto, T. Agric. Biol. Chem.
1991, 55, 157.
33. Akutsu, K.; Nakajima, H.; Katoh, T.; Kino, S.; Fujimori,
K. J. Chem. Soc., Perkin Trans. 2 1995, 1699.
34. Migliavacca, E.; Carrupt, P.-A.; Testa, B. Helv. Chim.
Acta 1997, 80, 1613.
35. Migliavacca, E.; Ancerewicz, J.; Carrupt, P.-A.; Testa, B.
Helv. Chim. Acta 1998, 81, 1337.
36. Rajan, P.; Vedernikova, I.; Cos, P.; Vanden Berghe, D.;
Augustyns, K.; Haemers, A. Bioorg. Med. Chem. Lett. 2001,
11, 215.
37. Dehareng, D.; Dive, G. J. Comp. Chem. 2000, 21, 483.
38. Computational tool: all the geometry optimizations and
instability calculations have been performed at the ab initio
level using the MINI-10 basis set.40,41 As pointed out in the
21. Jones, K.; Keenan, M.; Hibbert, F. Synlett 1996, 509.