D. Sustac Roman, V. Poiret, G. Pelletier, A. B. Charette
SHORT COMMUNICATION
Table 3. Sequential one-pot arylation.[a]
Acknowledgments
This work was supported by the Universite de Montreal, the Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC), the Canada Research Chair Program, and the Canada
Foundation for Innovation. D. S. R. and G. P. would like to thank
NSERC for CGS scholarships.
[1] a) R. Jorda, K. Paruch, V. Krysˇtof, Curr. Pharm. Des. 2012,
18, 2974–2980; b) A. Marwaha, J. White, F. El-Mazouni, S. A.
Creason, S. Kokkonda, F. S. Buckner, S. A. Charman, M. A.
Phillips, P. D. Rathod, J. Med. Chem. 2012, 55, 7425–7436.
[2] a) J. Koubachi, S. E. Kazzouli, M. Bousmina, G. Guillaumet,
Eur. J. Org. Chem. 2014, 5119–5138; b) B. M. Johnson, M. P.
Huestis, Eur. J. Org. Chem. 2014, 1589–1593; c) S. Grosse, C.
Pillard, S. Massip, J. M. Léger, C. Jarry, S. Bourg, P. Bernard,
G. Guillaumet, Chem. Eur. J. 2012, 18, 14943–14947; d) L. Pel-
legatti, E. Vedrenne, J.-M. Leger, C. Jarry, S. Routier, J. Comb.
Chem. 2010, 12, 604–608; e) C. Hulme, Y.-S. Lee, Mol. Diver-
sity 2008, 12, 1–15; f) C.-H. Park, V. Ryabova, I. V. Seregin,
A. W. Sromek, V. Gevorgyan, Org. Lett. 2004, 6, 1159–1162.
[3] a) S. Löber, H. Hübner, P. Gmeiner, Bioorg. Med. Chem. Lett.
2002, 12, 2377–2380; b) A. T. Baviskar, C. Madaan, R. Preet, P.
Mohapatra, V. Jain, A. Agarwal, S. K. Guchhait, C. N. Kundu,
U. C. Banerjee, P. V. Bharatam, J. Med. Chem. 2011, 54, 5013–
5030; c) S. Demirayak, I. Kayagil, L. Yurttas, Eur. J. Med.
Chem. 2011, 46, 411–416; d) J. P. Michael, Nat. Prod. Rep.
2002, 19, 742–760; e) T. D. Penning, N. S. Chandrakumar,
B. N. Desai, S. W. Djuric, A. F. Gasiecki, J. W. Malecha, J. M.
Miyashiro, M. A. Russell, L. J. Askonas, J. K. Gierse, E. I. Har-
ding, M. K. Highkin, J. F. Kachur, S. H. Kim, D. Villani-Price,
E. Y. Pyla, N. S. Ghoreishi-Haack, W. G. Smith, Bioorg. Med.
Chem. Lett. 2003, 13, 1137–1139.
[4] a) Q. Liao, L. Zhang, S. Li, C. Xi, Org. Lett. 2010, 12, 228–
231; b) K. L. Stevens, D. K. Jung, M. J. Alberti, J. G. Badiang,
G. E. Peckham, J. M. Veal, M. Cheung, P. A. Harris, S. D.
Chamberlain, M. R. Peel, Org. Lett. 2005, 7, 4753–4756; c)
B. A. Johns, K. S. Gudmundsson, E. M. Turner, S. H. Allen,
D. K. Jung, C. J. Sexton, F. L. Boyd Jr., M. R. Peel, Tetrahe-
dron 2003, 59, 9001–9011; d) A. V. Kel’in, A. W. Sromek, V.
Gevorgyan, J. Am. Chem. Soc. 2001, 123, 2074–2075.
[5] a) M. S. Khan, M. H. Baig, S. Ahmad, S. A. Siddiqui, A. K.
Srivastava, V. S. Kumar, I. A. Ansari, PLoS One 2013, 8,
e69982; b) A. Kamal, G. Ramakrishna, M. J. Ramaiah, V. Vis-
wanath, A. V. S. Rao, C. Bagul, D. Mukhopadyay,
S. N. C. V. L. Pushpavalli, M. Pal-Bhadra, MedChemComm
2013, 4, 697–703; c) B. W. Trotter, K. K. Nanda, C. S. Burgey,
C. M. Potteiger, J. Z. Deng, A. I. Green, J. C. Hartnett, N. R.
Kett, Z. Wu, D. A. Henze, K. D. Penna, R. Desai, M. D. Leitl,
W. Lemaire, R. B. White, S. Yeh, M. O. Urban, S. A. Kane,
G. D. Hartman, M. T. Bilodeau, Bioorg. Med. Chem. Lett.
2011, 21, 2354–2358; d) A. Kamal, G. Ramakrishna, P. Raju,
A. V. S. Rao, A. Viswanath, V. L. Nayak, S. Ramakrishna, Eur.
J. Med. Chem. 2011, 46, 2427–2435; e) H. J. J. Loozen, C. M.
Timmer, WO2010136438, 2010; f) N. J. Anthony, R. Gomez,
S. M. Jolly, D.-S. Su, WO2008076225 A2, 2008; g) D. Kim, L.
Wang, J. J. Hale, C. L. Lynch, R. J. Budhu, M. MacCoss, S. G.
Mills, L. Malkowitz, S. L. Gould, J. A. DeMartino, M. S.
Springer, D. Hazuda, M. Miller, J. Kessler, R. C. Hrin, G.
Carver, A. Carella, K. Henry, J. Lineberger, W. A. Schleif, E. A.
Emini, Bioorg. Med. Chem. Lett. 2005, 15, 2129–2134.
[a] Conditions: 1b (0.2 mmol), Ar1Br (0.24 mmol), MesCO2H
(0.06 mmol), [RuCl2(p-cymene)]2 (0.01 mmol), K2CO3 (0.4 mmol),
PhMe (1 mL), 130 °C, Ar, 6 or 16 h, then Pd(phen)2(PF6)2
(0.01 mmol), Cs2CO3 (0.4 mmol), Ar2X (0.24 mmol), 130 °C, Ar,
6–24 h. In some cases, monoaryl product 2 was also recovered.
[b] Contained about 8% unknown impurity. [c] Compound 2b was
not isolated, but trace amounts of other byproducts were observed
by LC–MS analysis (see the Supporting Information).
Experimental Section
Typical Procedure for Ru-Catalyzed Direct Arylation: A microwave
vial (previously kept in an oven and cooled to room temp. under
an atmosphere of argon) fit with a stir bar was charged with the
corresponding imidazopyridine (0.4 mmol, 1.0 equiv.), 2,4,6-tri-
methylbenzoic acid (0.12 mmol, 0.3 equiv.), and the aryl bromide
(0.48 mmol, 1.2 equiv.), if solid. The vial was then placed in a glove
box and dichloro(p-cymene)ruthenium dimer (0.02 mmol,
0.05 equiv.) and potassium carbonate (0.8 mmol, 2.0 equiv.) were
added. The vial was crimped and taken out of the glove box. The
aryl bromide (0.48 mmol, 1.2 equiv.), if liquid, was added by
syringe, followed by dry toluene (2 mL). The mixture was stirred
at 130 °C for 15 h. Then, the mixture was cooled to room tempera-
ture and filtered through a pad of silica and Celite, rinsing with
EtOAc (15–20 mL). The organic layer was washed with a solution
of saturated aqueous K2CO3 (15 mL) and water (15 mL). The
aqueous layer was extracted with EtOAc (2ϫ 10 mL). The com-
bined organic layer was washed with brine (10 mL), dried
(Na2SO4), and concentrated in vacuo. The resulting residue was
purified by flash chromatography.
[6] G. H. Hatzivassiliou, J. R. Haling, H. Chen, K. Song, S. Price,
R. Heald, J. F. M. Hewitt, M. Zak, A. Peck, C. Orr, M. Mer-
chant, K. P. Hoeflich, J. Chan, S.-M. Luoh, D. J. Anderson,
M. J. C. Ludlam, C. Wiesmann, M. Ultsch, L. S. Friedman, S.
Malek, M. Belvin, Nature 2013, 501, 232–236, and references
cited therein.
Supporting Information (see footnote on the first page of this arti-
cle): Experimental details; characterization data; and copies of the
1H NMR, 19F NMR, and 13C NMR spectra of all novel com-
pounds.
[7] a) F. Shibahara, E. Yamaguchi, A. Kitagawa, A. Imai, T. Mu-
rai, Tetrahedron 2009, 65, 5062–5073; b) F. Shibahara, A. Kita-
70
www.eurjoc.org
© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Org. Chem. 2015, 67–71