(12.0 mg, 50 wt%) were added to a solution of RB (5.0 mg, 0.005 mmol,
5 mol%) in 1.0 ml CH3CN followed by adding TMSCN (31.3 ml,
0.25 mmol, 2.5 equiv.) slowly. The reaction mixture was stirred under
green LED irradiation at room temperature. After 30 hours, the solvent
was removed in vacuo and the crude product was directly loaded onto
a short silica gel column. Flash chromatography was performed using
gradient elution with hexane/EA mixtures (40/1–10/1 ratio). After
removing solvent, product 2a (25.5 mg) was obtained as pale yellow
solid in 97% yield.
A. S. Kamlet, J. B. Steinman and D. R. Liu, Nat. Chem., 2011, 3,
146–153; (g) T. Maji, A. Karmakar and O. Reiser, J. Org. Chem.,
2011, 76, 736–739; (h) M.-H. Larraufie, R. Pellet, L. Fensterbank,
J.-P. Goddard, E. Lacoˆte, M. Malacria and C. Ollivier, Angew. Chem.,
Int. Ed., 2011, 50, 4463–4466; (i) Y. Su, L. Zhang and N. Jiao, Org.
Lett., 2011, 13, 2168–2171; (j) Y.-Q. Zou, L.-Q. Lu, L. Fu, N.-J.
Chang, J. Rong, J.-R. Chen and W.-J. Xiao, Angew. Chem., Int. Ed.,
2011, 50, 7171; (k) J. Xuan, Y. Cheng, J. An, L.-Q. Lu, X.-X. Zhang
and W.-J. Xiao, Chem. Commun., 2011, 47, 8337–8339.
9 (a) P. Esser, B. Pohlmann and H.-D. Scharf, Angew. Chem., Int. Ed.
Engl., 1994, 33, 2009–2023; (b) A. Mishra, M. K. R. Fischer and P.
Ba¨uerle, Angew. Chem., Int. Ed., 2009, 48, 2474–2499; (c) Y. Ooyama
and Y. Harima, Eur. J. Org. Chem., 2009, 2903–2934.
10 For selected examples, see: (a) M. Neumann, S. Fu¨ldner, B. Ko¨nig
and K. Zeitler, Angew. Chem., Int. Ed., 2011, 50, 951–954; (b) K.
Ohkubo, K. Mizushima, R. Iwata and S. Fukuzumi, Chem. Sci.,
2011, 2, 715–722; (c) H. Liu, W. Feng, C. W. Kee, Y. Zhao, D. Leow,
Y. P a n a n d C. - H . Ta n , Green Chem., 2010, 12, 953–956; (d) D. Dondi,
S. Protti, A. Albini, S. M. Carpio and M. Fagnoni, Green Chem.,
2009, 11, 1653–1659; (e) A. G. Griesbeck, M. Reckentha¨ler and J.
Uhlig, Photochem. Photobiol. Sci., 2010, 9, 775–778; (f) Y. Pan, C.
W. Kee, L. Chen and C.-H. Tan, Green Chem., 2011, 13, 2682–2685.
11 T.-F. Yeh, J.-M. Syu, C. Cheng, T.-H. Chang and H. Teng, Adv. Funct.
Mater., 2010, 20, 2255–2262.
12 (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335–344; (b) C. J. Scheuer-
mann, Chem.–Asian J., 2010, 5, 436–451.
13 (a) M. Rueping, C. Vila, R. M. Koenigs, K. Poscharny and D. C.
Fabry, Chem. Commun., 2011, 47, 2360–2362; (b) M. Rueping, S.
Zhu and R. M. Koenigs, Chem. Commun., 2011, 47, 8679.
14 D. P. Hari and B. Ko¨nig, Org. Lett., 2011, 13, 3852.
15 For selected examples, see: (a) J. Santamaria and F. Khuong-Huu,
Tetrahedron, 1978, 34, 1523–1528; (b) J. Santamaria, M. T. Kaddachi
and J. Rigaudy, Tetrahedron Lett., 1990, 31, 4735–4738; (c) R. J.
Sundberg, P. J. Hunt, P. Desos and K. G. Gadamasetti, J. Org.
Chem., 1991, 56, 1689–1692; (d) J. Santamaria, M. T. Kaddachi and
C. Ferroud, Tetrahedron Lett., 1992, 33, 781–784; (e) S.-I. Murahashi,
T. Nakae, H. Terai and N. Komiya, J. Am. Chem. Soc., 2008, 130,
11005–11012; (f) X.-Z. Shu, X.-F. Xia, Y.-F. Yang, K.-G. Ji, X.-Y. Liu
and Y.-M. Liang, J. Org. Chem., 2009, 74, 7464–7469; (g) W. Han and
A. R. Ofial, Chem. Commun., 2009, 5024–5026; (h) S. Singhal, S. L.
Jain and B. Sain, Adv. Synth. Catal., 2010, 352, 1338–1344; (i) J. M.
Allen and T. H. Lambert, J. Am. Chem. Soc., 2011, 133, 1260–1262.
16 S. Wang, P. K. Ang, Z. Wang, A. L. L. Tang, J. T. L. Thong and K.
P. Loh, Nano Lett., 2010, 10, 92–98.
1 (a) K. P. Loh, Q. Bao, G. Eda and M. Chhowalla, Nat. Chem., 2010, 2,
1015–1024; (b) J. Balapanuru, J.-X. Yang, S. Xiao, Q. Bao, M. Jahan,
L. Polavarapu, J. Wei, Q.-H. Xu and K. P. Loh, Angew. Chem., Int.
Ed., 2010, 49, 6549–6553; (c) F. Kim, L. J. Cote and J. Huang, Adv.
Mater., 2010, 22, 1954–1958; (d) Y. Zhu, S. Murali, W. Cai, X. Li, J.
W. Suk, J. R. Potts and R. S. Ruoff, Adv. Mater., 2010, 22, 3906–3924;
(e) S.-S. Li, K.-H. Tu, C.-C. Lin, C.-W. Chen and M. Chhowalla, ACS
Nano, 2010, 4, 3169–3174.
2 For reviews, see: (a) D. R. Dreyer, S. Park, C. W. Bielawski and R. S.
Ruoff, Chem. Soc. Rev., 2010, 39, 228–240; (b) J. Pyun, Angew. Chem.,
Int. Ed., 2011, 50, 46–48; (c) D. R. Dreyer and C. W. Bielawski, Chem.
Sci., 2011, 2, 1233–1240.
3 For selected examples, see: (a) D. R. Dreyer, H.-P. Jia and C. W.
Bielawski, Angew. Chem. Int. Ed., 2010, 49, 6813–6816; (b) Y. Gao, D.
Ma, C. Wang, J. Guan and X. Bao, Chem. Commun., 2011, 47, 2432–
2434; (c) G. M. Scheuermann, L. Rumi, P. Steurer, W. Bannwarth
and R. Mu¨lhaupt, J. Am. Chem. Soc., 2009, 131, 8262–8270; (d) J.
Ji, G. Zhang, H. Chen, S. Wang, G. Zhang, F. Zhang and X. Fan,
Chem. Sci., 2011, 2, 484–487; (e) X.-H. Li, J.-S. Chen, X. Wang, J.
Sun and M. Antonietti, J. Am. Chem. Soc., 2011, 133, 8074–8077;
(f) H.-P. Jia, D. R. Dreyer and C. W. Bielawski, Tetrahedron, 2011,
67, 4431–4434; (g) H.-P. Jia, D. R. Dreyer and C. W. Bielawski, Adv.
Synth. Catal., 2011, 353, 528–532.
4 For recent reviews, see: (a) M. Fagnoni, D. Dondi, D. Ravelli and A.
Albini, Chem. Rev., 2007, 107, 2725–2756; (b) N. Hoffmann, Chem.
Rev., 2008, 108, 1052–1103; (c) D. Ravelli, D. Dondi, M. Fagnoni
and A. Albini, Chem. Soc. Rev., 2009, 38, 1999–2011; (d) K. Zeitler,
Angew. Chem., Int. Ed., 2009, 48, 9785–9789; (e) T. P. Yoon, M.
A. Ischay and J. Du, Nat. Chem., 2010, 2, 527–532; (f) J. M. R.
Narayanam and C. R. J. Stephenson, Chem. Soc. Rev., 2011, 40,
102–113.
5 (a) D. A. Nicewicz and D. W. C. MacMillan, Science, 2008, 322,
77–80; (b) D. A. Nagib, M. E. Scott and D. W. C. MacMillan, J. Am.
Chem. Soc., 2009, 131, 10875–10877; (c) H.-W. Shih, M. N. Vander
Wal, R. L. Grange and D. W. C. MacMillan, J. Am. Chem. Soc.,
2010, 132, 13600–13603; (d) P. V. Pham, D. A. Nagib and D. W. C.
MacMillan, Angew. Chem., Int. Ed., 2011, 50, 6119–6122.
6 (a) M. A. Ischay, M. E. Anzovino, J. Du and T. P. Yoon, J. Am. Chem.
Soc., 2008, 130, 12886–12887; (b) J. Du and T. P. Yoon, J. Am. Chem.
Soc., 2009, 131, 14604–14605; (c) M. A. Ischay, Z. Lu and T. P. Yoon,
J. Am. Chem. Soc., 2010, 132, 8572–8574; (d) Z. Lu, M. Shen and T.
P. Yoon, J. Am. Chem. Soc., 2011, 133, 1162–1164; (e) A. E. Hurtley,
M. A. Cismesia, M. A. Ischay and T. P. Yoon, Tetrahedron, 2011, 67,
4442–4448.
17 (a) Z. Li and C.-J. Li, J. Am. Chem. Soc., 2005, 127, 3672–3673; (b) O.
Basle and C.-J. Li, Green Chem., 2007, 9, 1047–1050.
18 (a) S. Purser, P. R. Moore, S. Swallow and V. Gouverneur, Chem. Soc.
Rev., 2008, 37, 320–330; (b) I. Ojima, Fluorine in Medicinal Chemistry
and Chemical Biology, Wiley-Blackwell, 2009.
19 J.-A. Ma and D. Cahard, Chem. Rev., 2004, 104, 6119–6146.
20 L. Chu and F.-L. Qing, Chem. Commun., 2010, 46, 6285–
287.
21 C. Ferroud, P. Rool and J. Santamaria, Tetrahedron Lett., 1998, 39,
9423–9426.
22 Singlet oxygen is generated by triplet–triplet energy transfer from the
photosensitizer triplet state, the process is feasible if the sensitizer
triplet energy ET > 95 kJ mol-1. Upon absorption of photon, the
excited dyes are initially in a singlet state, therefore there is a need to
undergo intersystem crossing to a triplet state before photosensitizing
of dioxygen via the spin-allowed triplet–triplet energy transfer is
possible. However the transition from a singlet potential energy
surface to a triplet one is forbidden, but can be facilitated by spin–
orbit coupling, which requires the presence of heavy atom as in the
case of RB or vibronic spin–orbit coupling as in TPP. The lack of
heavy atom and vibronic spin–orbit coupling in Fluorescein result
in its low triplet quantum yield of 0.02, and thus its inability to
photosensitize triplet oxygen via triplet–triplet energy transfer. (see:
(a) S. Perun, J. Tatchen and C. M. Marian, ChemPhysChem, 2008, 9,
282–292; (b) M. Montalti, S. L. Murov, Handbook of photochemistry,
3rd edn, CRC/Taylor & Francis, Boca Raton, 2006).
7 (a) J. M. R. Narayanam, J. W. Tucker and C. R. J. Stephenson,
J. Am. Chem. Soc., 2009, 131, 8756–8757; (b) J. W. Tucker, J. M.
R. Narayanam, S. W. Krabbe and C. R. J. Stephenson, Org. Lett.,
2010, 12, 368–371; (c) A. G. Condie, J. C. Gonza´lez-Go´mez and C.
R. J. Stephenson, J. Am. Chem. Soc., 2010, 132, 1464–1465; (d) J.
W. Tucker, J. D. Nguyen, J. M. R. Narayanam, S. W. Krabbe and
C. R. J. Stephenson, Chem. Commun., 2010, 46, 4985–4987; (e) L.
Furst, B. S. Matsuura, J. M. R. Narayanam, J. W. Tucker and C.
R. J. Stephenson, Org. Lett., 2010, 12, 3104–3107; (f) C. Dai, J. M.
R. Narayanam and C. R. J. Stephenson, Nat. Chem., 2011, 3, 140–
145; (g) J. D. Nguyen, J. W. Tucker, M. D. Konieczynska and C. R.
J. Stephenson, J. Am. Chem. Soc., 2011, 133, 4160–4163; (h) J. W.
Tucker, J. M. R. Narayanam, P. S. Shah and C. R. J. Stephenson,
Chem. Commun., 2011, 47, 5040–5042.
8 For selected examples from other groups, see: (a) H. Cano-Yelo and
A. Deronzier, J. Chem. Soc., Perkin Trans. 2, 1984, 1093–1098; (b) H.
Cano-Yelo and A. Deronzier, Tetrahedron Lett., 1984, 25, 5517–
5520; (c) J.-M. Zen, S.-L. Liou, A. S. Kumar and M.-S. Hsia, Angew.
Chem., Int. Ed., 2003, 42, 577–579; (d) T. Koike and M. Akita, Chem.
Lett., 2009, 38, 166–167; (e) R. S. Andrews, J. J. Becker and M. R.
Gagne´, Angew. Chem., Int. Ed., 2010, 49, 7274–7276; (f) Y. Chen,
23 An insightful reviewer also suggested in the presence of very high
concentration of solid surface, the rate of physical quenching of
singlet oxygen will be very high. Its lifetime in acetonitrile is also not
high. The reaction may occur predominantly on electron-transfer
process rather than singlet oxygen process.
3344 | Green Chem., 2011, 13, 3341–3344
This journal is
The Royal Society of Chemistry 2011
©