D. M. Springer et al. / Bioorg. Med. Chem. Lett. 13 (2003) 1751–1753
1753
Table 1.
References and Notes
Organism
A no. Mic of compounds (mg/mL)
1. (a) Kavanagh, F.; Hervey, A.; Robbins, W. J. Proc. Natl.
Acad. Sci. U.S.A. 1951, 37, 570. (b) Egger, H.; Reinshagen, H.
J. Antibiot. 1976, 29, 923.
2. (a) Arigoni, D. Gazz. Chim. Ital. 1962, 92, 884. (b) Birch,
A. J.; Holzapfel, C. W.; Rickards, R. W. Tetrahedron 1966,
Suppl. 8, 359. (c) Berner, H.; Vyplel, H.; Schulz, G. Tetra-
hedron 1987, 43, 765 and references cited therein.
11
12
1
2
3
4
S. pneumoniae/Pen. Resist. A28272
S. aureus/Homo MRA27223
32
0.003
32
0.003
M. catarrhalis/Pen. +
H. influenzae/Pen. +
A22344
A21515
64
64
0.125
4
3. (a) Anderson, M. D. Vet. Med. Small Anim. Clin. 1983, 78,
98. (b) Burch, D. G. S.; Jones, G. T.; Heard, T. W.; Tuck,
R . E.Veterinary Record 1986, 119, 108.
conformation can now be accessed that allows the
hydroxyl at C-11 to approach the backside of the C-14
carbon’s hydroxyl bond to displace it via acid catalysis,
forming the cyclic ether between C-11 and C-14.
4. (a) Ganzinger, U.; Stephen, A.; Obenaus, H.; Baumgartner,
R.; Walzl, H.; Bruggemann, S.; Schmid, B.; Racine, R.;
Schatz, F.; Haberl, H. In Proc. Int. Congr. Chemother. 13th;
Spitzey, K. H., Karrer, K., eds.; H. Egermann: Vienna, Aus-
tria, 1983, Vol. 5, p 108/53. (b) Nefzger, M.; Battig, F.; Czok,
R . InProc. Int. Congr. Chemother. 13th; Spitzey, K. H., Kar-
rer, K., eds.; H. Egermann: Vienna, Austria, 1983; Vol. 5, p
108/47. (c) Schatz, F.; Haberl, Czok, R. In Proc. Int. Congr.
Chemother. 13th; Spitzey, K. H., Karrer, K., eds.; H. Eger-
mann: Vienna, Austria, 1983, Vol. 5, p. 108/50.
5. Berner, H.; Hildebrandt, J.; Schuster, I. In Proc. Int. Congr.
Chemother. 13th; Spitzey, K. H., Karrer, K., Eds.; H. Eger-
mann: Vienna, Austria, 1983; Vol. 5, p. 108/20, and references
cited.
6. (a) An experimental description of the efforts to produce 4a
and 4b is absent from the literature; however, the approach is
alluded to in the following reports: Berner, H.; Vyplel, H.;
Schulz, G.; Stuchlik, P. Tetrahedron 1983, 39, 1317. (b) Berner,
H.; Vyplel, H.; Schulz, G. Tetrahedron 1987, 43, 765.
7. Berner, H.; Vyplel, H.; Schulz, G.; Stuchlik, P. Monatsh.
Chem. 1983, 114, 1125.
8. Hanson, R. L.; Matson, J. A.; Brzozowski, D. B.;
LaPorte, T. L.; Springer, D. M.; Patel, R. N. Organic Process
Research and Development 2002, 6, 482.
9. Brooks, G.; Burgess, W.; Colthurst, D.; Hinks, J. D.; Hunt,
E.; Pearson, M. J.; Shea, B.; Takle, A. K.; Wilson, J. M.;
Woodnutt, G. Bioorg. Med. Chem. Lett. 2001, 9, 1221.
10. Berner, H.; Schulz, G.; Schneider, H. Tetrahedron 1980,
36, 1807.
We employed new tactics to arrive at the desired C-8
keto derivative 11. We found that diol 8 could be selec-
tively acylated at C-11. Introduction of the carbamate
at C-14 was then followed by hydrolysis of the acetate
at C-11 to deliver 11.12 Quite surprisingly, C-8 keto
derivative 11 was found to be ꢁ10,000 times less active
than C-8 methylene derivative 12 in vitro against bac-
teria of interest to our program (see Table 1). This
staggering erosion of activity after such a slight struc-
tural change, coupled with the observations that
8-hydroxy azamulin 13 and the C-6 epimeric pleuro-
mutilin 14 are poorly active, clearly indicates that the
environment of the cyclohexyl ring of the system is cru-
cial to the molecule’s interactions with the ribosomal
complex. Altering this portion of the molecule (to
improve pharmacokinetic parameters and avoid meta-
bolic liabilities) while maintaining antibacterial potency
will be a significant challenge to further investigations in
the pleuromutilin class.
11. 1H NMRdata for 10: (500 MHz, CDCl3, partial) d 5.91
(dd, 1H, J=11, 17 Hz), 4.92 (d, 1H, J=17 Hz), 4.84 (d, 1H,
J=11 Hz), 3.89 (dd, 1H, J1=J2=8 Hz), 3.86 (d, 1H, J=10
Hz), 3.23–3.16 (m, 1H), 3.22 (s, 3H), 2.50–2.47 (m, 1H), 2.45–
2.38 (m, 1H), 2.09 (d, 1H, J=2 Hz), 2.05–2.00 (m, 1H), 1.84–
1.68 (m, 3H), 1.48–1.44 (m, 1H), 1.23 (s, 3H), 1.04 (d, 3H,
J=7 Hz), 0.99 (s, 3H), 0.92 (d, 3H, J=8 Hz).
12. 1H NMRdata for 11: (300 MHz, CDCl3) d 7.36–7.22 (m,
2H), 6.94–6.82 (m, 2H), 6.55 (dd, 1H, J=11, 18 Hz), 5.27 (d,
1H, J=18 Hz), 3.80 (s, 3H), 3.45–3.35 (m, 1H), 2.91 (dd, 1H,
J1=J2=14 Hz), 2.65–2.50 (m, 2H), 2.42 (br s, 1H), 2.31–2.17
(m, 3H), 2.17–1.93 (m, 2H), 1.69–1.15 (m, 8H), 1.24 (s, 3H),
0.95–0.86 (m, 3H), 0.80 (d, 3H, J=7 Hz).
Acknowledgements
We thank our colleagues in the Department of Micro-
biology in Wallingford, CT for the biological data
reported in this work.