Chemistry of Heterocyclic Compounds 2017, 53(12), 1286–1293
(J, Hz): 2.14 (3Н, s, СН3); 2.85 (2Н, t, 3J = 7.4, СН2); 3.07
Soedin. 2016, 52, 359.] (c) Abaev, V. T.; Trushkov, I. V.;
Uchuskin, M. G. Chem. Heterocycl. Compd. 2016, 52, 973.
[Khim. Geterotsikl. Soedin. 2016, 52, 973.]
3
(2Н, t, J = 7.4, СН2); 6.98 (1Н, s, H indole); 7.10–7.15
(1Н, m, H indole); 7.17–7.22 (1Н, m, H indole); 7.32–7.36
(1Н, m, H indole); 7.59–7.61 (1Н, m, H indole); 7.96 (1Н,
br. s, NH). 13C NMR spectrum, δ, ppm: 19.6; 30.1; 44.3;
111.3; 115.5; 118.8; 119.5; 121.6; 122.2; 127.4; 136.6; 206.7.
4-(2-Methyl-1Н-indol-3-yl)butan-2-one (6b).22 Yield
71 mg (71%), yellow oil. 1H NMR spectrum, δ, ppm (J, Hz):
2.06 (3Н, s, СН3); 2.33 (3Н, s, СН3); 2.69 (2Н, t, 3J = 7.2,
6. (a) Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and
Practice; Oxford University Press, 1998, р. 30. (b) Beach, E. S.;
Cui, Z.; Anastas, P. T. Energy Environ. Sci. 2009, 2, 1038.
(c) Anastas, P.; Eghbali, N. Chem. Soc. Rev. 2010, 39, 301.
7. (a) Schnurch, M.; Dastbaravardeh, N.; Ghobrial, M.; Mrozek, B.;
Mihovilovic, M. D. Curr. Org. Chem. 2011, 15, 2694.
(b) Sharma, A.; Vacchani, D.; Van der Eycken, E. Chem.–
Eur. J. 2013, 19, 1158. (c) Wei, Y.; Hu, P.; Zhang, M.; Su, W.
Chem. Rev. 2017, 117, 8864.
3
СН2); 2.84 (2Н, t, J = 7.2, СН2); 6.90–7.00 (2Н, m,
H indole); 7.23–7.25 (1Н, m, H indole); 7.40–7.42 (1Н, m,
H indole); 10.65 (1Н, br. s, NH). 13C NMR spectrum, δ, ppm:
11.2; 18.1; 29.7; 43.8; 109.1; 110.3; 117.3; 118.0; 119.9;
127.9; 131.4; 135.2; 208.3.
8. (a) Uchuskin, M. G.; Makarov, A. S.; Butin, A. V. Chem.
Heterocycl. Compd. 2014, 50, 791. [Khim. Geterotsikl.
Soedin. 2014, 860.] (b) Santos, F. M.; Batista, J. H. C.;
Vessecchi, R.; Clososki, G. C. Synlett 2015, 2795.
9. (a) Wetzel, A.; Pratsch, G.; Kolb, R.; Heinrich, M. R. Chem.–
Eur. J. 2010, 16, 2547. (b) Pratsch, G.; Anger, C. A.; Ritter, K.;
Heinrich, M. R. Chem.–Eur. J. 2011, 17, 4104. (c) Chalikidi, P. N.;
Nevolina, T. A.; Uchuskin, M. G.; Abaev, V. T.; Butin, A. V.
Chem. Heterocycl. Compd. 2015, 51, 621. [Khim. Geterotsikl.
Soedin. 2015, 51, 621.]
10. (a) Zhao, J.; Huang, L.; Cheng, K.; Zhang, Y. Tetrahedron
Lett. 2009, 50, 2758. (b) Zhang, Y.; Li, Z.; Liu, Z. Q. Org.
Lett. 2012, 14, 226. (c) Pei, K.; Jie, X.; Zhao, H.; Su, W.
Eur. J. Org. Chem. 2014, 20, 4230. (d) Bheeter, C. B.; Chen, L.;
Soulé, J.-F.; Doucet, H. Catal. Sci. Technol. 2016, 6,
2005.
1
A Supporting information file containing Н and 13С
NMR spectra of all synthesized compounds is available at
This work was supported by the Russian Foundation for
Basic Research (grant 16-33-00101 mol_a) and the
Ministry of Education and Science of the Russian
Federation (contract No. 02.a03.0008).
References
1. (a) Kate, A. S.; Pearson, J. K.; Ramanathan, B.; Richard, K.;
Kerr, R. G. J. Nat. Prod. 2009, 72, 1331. (b) Yodsaoue, O.;
Karalai, C.; Ponglimanont, C.; Tewtrakul, S.; Chantrapromma, S.
Tetrahedron 2011, 67, 6838. (c) Liu, Q.; Ahn, J. H.; Kim, S. B.;
Lee, C.; Hwang, Y. B.; Lee, M. K. Phytochemistry 2013, 87, 112.
(d) Cheng, Y.-B.; Chien, Y.-T.; Lee, J.-C.; Tseng, C.-K.; Wang, H.-C.;
Lo, I-W.; Wu, Y.-H.; Wang, S.-Y.; Wu, Y.-C.; Chang, F.-R. J.
Nat. Prod. 2014, 77, 2367. (e) Bai, W.; Jin, X.; Jia, X.; Tang, W.;
Wang, X.; Zhao, Y. Phytochem. Lett. 2014, 10, 118. (f) Bel, M. D.;
Abela, A. R.; Ng, J. D.; Guerrero, C. A. J. Am. Chem. Soc. 2017, 139, 6819.
2. (a) Hansen, S. W.; Erichsen, M. N.; Fu, B.; Bjorn-Yoshimoto, W. E.;
Abrahamsen, B.; Hansen, J. C.; Jensen, A. A.; Bunch, L. J.
Med. Chem. 2016, 59, 8757. (b) Varano, F.; Catarzi, D.;
Vincenzi, F.; Betti, M.; Falsini, M.; Ravani, A.; Borea, P. A.;
Clotta, V.; Varani, K. J. Med. Chem. 2016, 59, 10564.
(c) Carbajales, C.; Azuaje, J.; Oliveira, A.; Loza, M. I.; Brea, J.;
Cadavid, M. I.; Masaguer, C. F.; Garcia-Mera, X.; Gutierrez-
de-Teran, G.; Sotelo, E. J. Med. Chem. 2017, 60, 3372.
(d) Jimenez-Somarribas, A.; Mao, S.; Yoon, J.-J.; Weisshaar, M.;
Cox, R. M.; Marengo, J. R.; Mitchell, D. G.; Morehouse, Z. P.;
Yan, D.; Solis, I.; Liotta, D. C.; Natchus, M. G.; Plemper, R. K.
J. Med. Chem. 2017, 60, 2305.
11. (a) Jiang, Q.; Guo, T.; Wu, K.; Yu, Z. Chem. Commun. 2016,
52, 2913. (b) Correia, J. T. M.; List, B.; Coelho, F. Angew.
Chem., Int. Ed. 2017, 56, 7967. (c) Hayashi, M.; Matsubara, R.
Tetrahedron Lett. 2017, 58, 1793.
12. (a) Alder, K.; Schmidt, C.-H. Chem. Ber. 1943, 76, 183.
(b) Poirier, J.-M.; Dujardin, G. Heterocycles 1987, 25, 399.
(c) Gerlach, H.; Huber, E. Helv. Chim. Acta 1967, 50, 2087.
(d) Akhmedov, Sh. T.; Sadykhov, N. S.; Akhmedova, R. Sh.;
Zefirov, N. S. Chem. Heterocycl. Compd. 1981, 17, 1158. [Khim.
Geterotsikl. Soedin. 1981, 1593.] (e) Chau, C. M.; Liu, K. M.
Org. Biomol. Chem. 2008, 6, 3127. (f) Alder, R. W.; Hyland, N. P.;
Jeffery, J. C.; Riis-Johannessen, T.; Riley, D. J. Org. Biomol.
Chem. 2009, 7, 2704.
13. (a) Straub, B. F. Organotransition Metal Chemistry:
From Bonding to Catalysis; Hartwig, J. F., Ed.;
University Science Books, 2011. (b) Lewis Acids in
Organic Synthesis; Yamamoto, H., Ed.; Wiley–VCH,
2000.
14. (a) Bulbule, V. J.; Deshpande, V. H.; Bedekar, A. V. J. Chem.
Res., Synop. 2000, 220. (b) Hashmi, A. S. K.; Schwarz, L.;
Choi, J.-H.; Frost, T. M. Angew. Chem., Int. Ed. 2000, 39,
2285. (c) Dyker, G.; Muth, E.; Hashmi, A. S. K.; Ding, L.
Adv. Synth. Catal. 2003, 345, 1247. (d) Hashmi, A. S. K.;
Grundl, L. Tetrahedron 2005, 61, 6231. (e) Li, Z.; Shi, Z.;
He, C. J. Organomet. Chem. 2005, 690, 5049. (f) Lin, Y. D.;
Kao, J. Q.; Chen, C. T. Org. Lett. 2007, 9, 5195. (g) Aguilar, D.;
Contel, M.; Navarro, R.; Soler, T.; Urriolabeitia, E. P. J.
Organomet. Chem. 2009, 694, 486. (h) Leuger, J.; Blond, G.;
Billard, T.; Haufe, G.; Langlois, B. R. J. Fluorine Chem.
2011, 132, 799. (i) Zhang, X.; Yu, X.; Feng, X.; Bao, M.
Synlett 2012, 1605. (j) Das, D.; Pratihar, S.; Roy, S. J.
Org. Chem. 2013, 78, 2430. (k) Bagi, A. H.; Khaledi, Y.;
Ghari, H.; Arndt, S.; Hashmi, A. S.; Yates, B. F.; Ariafard, A.
J. Am. Chem. Soc. 2016, 138, 14599. (l) Metz, T. L.;
Evans, J.; Stanley, L. M. Org. Lett. 2017, 19, 3442.
3. (a) Biopolymers – New Materials for Sustainable Films and
Coatings; Plackett, D., Ed.; John Wiley & Sons, Ltd., 2011,
p. 179. (b) Yiu, A. Y.; Beaujuge P. M.; Lee, O. P.; Woo, C. H.;
Toney, M. F.; Frechet, J. M. J. Am. Chem.Soc. 2012, 134,
2180. (c) Gandini, A.; Lacerda, T. M.; Carvalho, A. J.;
Trovatti, E. Chem. Rev. 2016, 116, 1637.
4. (a) Introduction to Chemicals from Biomass; Clark, J. H.;
Deswarte, F., Eds.; John Wiley
& Sons, Ltd., 2015.
(b) Husson, J.; Dehaudt, J.; Guyard, L. J. Environ. Chem.
Eng. 2015, 3, 2292. (c) Liu, B.; Zhang, Z. ChemSusChem
2016, 9, 2015. (d) Chernyshev, V. M.; Kravchenko, O. A.;
Ananikov, V. P. Russ. Chem. Rev. 2017, 86, 357. [Usp.
Khim., 2017, 86, 357.]
5. (a) Trushkov, I. V.; Uchuskin, M. G.; Butin, A. V. Eur. J.
Org. Chem. 2015, 14, 2999. (b) Merkushev, A. A. Chem.
Heterocycl. Compd. 2016, 52, 359. [Khim. Geterotsikl.
15. Makarov, A. S.; Fadeev, A. A.; Uchuskin, M. G.;
Sorotskaya, L. N.; Trushkov, I. V.; Butin, A. V. RU patent
2602501; Byul. Izobret. 2016, (32).
1292