Communication
ChemComm
This work was supported by AMED-CREST, AMED under
Grant Number JP18gm071004 (M. S.). This work was also
supported by JST CREST Grant Number JPMJCR1925 (M. S.),
MEXT KAKENHI Grant Number JP26110004 (M. S. and K. D.),
and JSPS KAKENHI Grant Number JP18K14360 and JP20K15418
(S. E.). S. E. was supported by the Special Postdoctoral Researchers’
Program in RIKEN.
Conflicts of interest
There are no conflicts to declare.
Notes and references
1 C. D. Funk, Science, 2001, 294, 1871–1875.
2 M. J. Mueller, Chem. Biol., 1998, 5, R323–R333.
3 I. de Bus, R. Witkamp, H. Zuilhof, B. Albada and M. Balvers,
Prostaglandins Other Lipid Mediators, 2019, 144, 106351.
4 U. N. Das, Med. Sci. Monit., 2007, 13, RA119–RA131.
5 U. N. Das, Cancer Lett., 1991, 56, 235–243.
Fig. 6 Raman images of WI-38 cells treated with 100 mM all-D-GLA.
6 P. Sangeetha Sagar, U. N. Das, R. Koratkar, G. Ramesh, M. Padma
and G. Sravan Kumar, Cancer Lett., 1992, 63, 189–198.
7 Q. Yu, Z. Shan, K. Ni and S. Y. Qian, Free Radical Res., 2008, 42,
442–455.
8 M. A. Fomich, A. V. Bekish, D. Vidovic, C. R. Lamberson, I. L.
Lysenko, P. Lawrence, J. T. Brenna, O. L. Sharko, V. V. Shmanai and
M. S. Shchepinov, ChemistrySelect, 2016, 1, 4758–4764.
9 A. R. Navratil, M. S. Shchepinov and E. A. Dennis, J. Am. Chem. Soc.,
2018, 140, 235–243.
10 S. Hill, C. R. Lamberson, L. Xu, R. To, H. S. Tsui, V. V. Shmanai,
A. V. Bekish, A. M. Awad, B. N. Marbois, C. R. Cantor, N. A. Porter,
C. F. Clarke and M. S. Shchepinov, Free Radical Biol. Med., 2012, 53,
893–906.
11 A. M. Firsov, M. A. Fomich, A. V. Bekish, O. L. Sharko, E. A. Kotova,
H. J. Saal, D. Vidovic, V. V. Shmanai, D. A. Pratt, Y. N. Antonenko
and M. S. Shchepinov, FEBS J., 2019, 286, 2099–2117.
12 H. J. Van Manen, A. Lenferink and C. Otto, Anal. Chem., 2008, 80,
9576–9582.
(100 mM), and Raman images were taken in the same manner as
described for VA-13 cells. Initially, all-D-GLA was accumulated
into LDs, as in VA-13 cells, but as the incubation time increased,
the Raman signal of C–D bond was also observed outside of LDs.
It is noteworthy that the H–C–H and CQC–H signals decreased
gradually as all-D-GLA was incorporated (Fig. 6, Fig. S5A and
S6, ESI†). These changes imply the metabolic replacement of
cellular fatty acids by all-D-GLA. In addition to serving as an
energy source in mitochondria, fatty acids are also used to
synthesize membrane phospholipids. This step would not
require modification of the deuterated methylenes. Therefore,
excess all-D-GLA in LDs might be used for membrane synthesis
in WI-38 cells. We also constructed merged images from the
D–C–D signal and CQC–H signal (Fig. S5B, ESI†), and 13 H. Yamakoshi, K. Dodo, A. Palonpon, J. Ando, K. Fujita, S. Kawata
and M. Sodeoka, J. Am. Chem. Soc., 2012, 134, 20681–20689.
14 H. Yamakoshi, K. Dodo, M. Okada, J. Ando, A. Palonpon, K. Fujita,
these clearly visualized the difference of cellular distribution of
all-D-GLA between VA-13 and WI-38 cells. In VA-13 cells,
S. Kawata and M. Sodeoka, J. Am. Chem. Soc., 2011, 133, 6102–6105.
all-D-GLA stayed in LDs. In contrast, in WI-38 cells, all-D-GLA 15 A. F. Palonpon, J. Ando, H. Yamakoshi, K. Dodo, M. Sodeoka,
S. Kawata and K. Fujita, Nat. Protoc., 2013, 8, 677–692.
16 L. Wei, F. Hu, Y. Shen, Z. Chen, Y. Yu, C. C. Lin, M. C. Wang and
distributed throughout the cell, though it partly colocalized with
LDs. This observation implies that WI-38 cells could use GLA in
W. Min, Nat. Methods, 2014, 11, 410–412.
the same manner as other PUFAs. In Fig. 2 and 3, deuterated 17 H.-J. van Manen, Y. M. Kraan, D. Roos and C. Otto, Proc. Natl. Acad.
Sci. U. S. A., 2005, 102, 10159–10164.
18 X. S. Xie, J. Yu and W. Y. Yang, Science, 2006, 312, 228–230.
19 K. Asano and S. Matsubara, Org. Lett., 2009, 11, 1757–1759.
GLA improved the cell viability of WI-38 cells up to 125%
compared with control cells. Recent study reported the improve-
ment of cell viability of embryonic cells by the treatment with 20 M. P. Meyer and J. P. Klinman, Tetrahedron Lett., 2008, 49,
a-linolenic acid (ALA).29 Although the detailed mechanism is
unclear, GLA might have the same activity to WI-38 cells.
3600–3603.
21 P. Bhar, D. W. Reed, P. S. Covello and P. H. Buist, Angew. Chem., Int.
Ed., 2012, 51, 6686–6690.
In conclusion, we have synthesized partially/fully deuterated 22 T. Jeffery, S. Gueugnot and G. Linstrumelle, Tetrahedron Lett., 1992,
33, 5757–5760.
GLA, and established an assay system using VA-13/WI-38 cells
to examine the reported tumor-selective cytotoxicity of GLA.
23 R. E. Claus and S. L. Schreiber, Org. Synth., 1986, 64, 150.
24 J. Pietruszka and A. Witt, Synthesis, 2006, 4266–4268.
¨
Deuteration of GLA increased the selectivity for tumor cells, 25 H. W. Schrotter and E. G. Hoffmann, Justus Liebigs Ann. Chem., 1964,
672, 44–54.
suggesting that GLA itself, but not its oxidized metabolites,
mediates the tumor-selective cytotoxicity. Raman imaging of
26 D. Fu, Y. Yu, A. Folick, E. Currie, R. V. Farese, T.-H. Tsai, X. S. Xie
and M. C. Wang, J. Am. Chem. Soc., 2014, 136, 8820–8828.
all-D-GLA revealed its accumulation in LDs. A difference of 27 S. Koizume and Y. Miyagi, Int. J. Mol. Sci., 2016, 17, 1430.
28 Q. Liu, Q. Luo, A. Halim and G. Song, Cancer Lett., 2017, 401, 39–45.
29 R. Mahmoudi, M. Ghareghani, K. Zibara, M. Tajali Ardakani,
LD-related metabolism between tumor and normal cells might
be responsible for the tumor-selective cytotoxicity of GLA.
Y. Jand, H. Azari, J. Nikbakht and A. Ghanbari, BMC Complementary
Further mechanistic studies are in progress.
Altern. Med., 2019, 19, 113.
This journal is The Royal Society of Chemistry 2021
Chem. Commun., 2021, 57, 2180À2183 | 2183