Journal of the American Chemical Society
Page 4 of 6
a cationic [PhI(OAc)]+ character facilitates the crucial interaction
between the iodine(III) center and the substrates π system.
1
Notes
The authors declare no competing financial interests.
2
3
4
5
6
7
8
9
A DFT mechanistic study of the reactivity of PIDA towards me-
sitylene was undertaken to unravel the effect of the Lewis additive
assuming an SEAr process (Figure 7). For the reaction to take
place, mesitylene required cis binding to the Ph ligand (the
strongest trans-directing ligand). This was made possible by a
movement of the OAc to a position trans to Ph, which, in the
absence of a Lewis acid, proceeds with a barrier of 19.8 kcal mol-1
(TS-I-II, Fig. 6). In contrast, binding of the BF3 group greatly
facilitates the “slipping” of the resulting anion (TS-I-II-BF3
Figure 6). The subsequent binding of mesitylene is favorable. The
reaction is completed by the acetate-assisted C-H deprotonation to
restore the aromaticity of the mesitylene ring. This step is also
favored by BF3 (TS-III-IV). Thus, in this case BF3 promotes the
reactivity at two levels: by favoring the intramolecular pre-
arrangement of the λ3-iodane and by lowering the activation
barrier of the bond breaking event.
ACKNOWLEDGMENT
This work was funded by Fundació ICIQ, MINECO (CTQ2013-
46705-R, CTQ2014-54071-P, CTQ2014-53662-P, 2014-2018
Severo Ochoa Excellence Accreditation SEV-2013-0319 and
CTQ2014-51912-REDC) and the Generalitat de Catalunya (2014
SGR 1192, 2014 SGR 1105). The CELLEX Foundation is grate-
fully acknowledged for a post-doctoral contract to S. I. and for
support through the CELLEX-ICIQ HTE platform.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
REFERENCES
(1) For an historical perspective, see Varvoglis, A. Hypervalent Iodine
in Organic Synthesis; Academic Press: London, 1997.
(2) a) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523-2584;
b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299-5358; c)
Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328−3435.
(3) a) Hypervalent Iodine Chemistry. Modern Developments in Organic
Synthesis, Editor: T. Wirth, Springer 2003; b) Singh, F. V.; Wirth, T.
Chem. Asian J. 2014, 9, 950–971; c) Silva, L. F.; Olofsson, B. Nat. Prod.
Rep. 2014, 28, 1722-1754.
(4) Merritt, E. A.; Olofsson, B. Angew. Chem. Int. Ed. 2009, 48, 9052 –
9070.
(5) Kida, M; Sueda, T.; Goto, S.; Okuyama T.; Ochiai, M. Chem.
Commun. 1996, 1933-1934.
(6) For an early example; a) Tohma, H.; Iwata, M.; Maegawa, T.; Ki-
yono, Y.; Maruyama, A.; Kita, Y. Org. Biomol. Chem. 2003, 1, 1647-
1649; for a review, see: b) Narayan, R.; Matcha, K.; Antonchick, A. P.
Chem. Eur. J. 2015, 21, 14678 – 14693.
(7) Liu, H.; Wang, X.; Gu, Y. Org. Biomol. Chem. 2011, 9, 1614–1620.
(8) Zhong, W.; Yang, J.; Meng, X.; Li, Z. J. Org. Chem. 2011, 76,
9997−10004.
(9) Ochiai, M.; Hirobe, M.; Yoshimura, A.; Nishi, Y.; Miyamoto, K.;
Shiro, M. Org. Lett. 2007, 9, 3335-3338.
Figure 7. DFT Gibbs energy profile in CH2Cl2) for the reaction
between PIDA and mesitylene with and without BF3·Et2O.
(10) a) Gu, Y.; Xue, K. Tetrahedron Lett. 2010, 51 192–196; b) Serna,
In summary, the phenomenon of acid activation of simple λ3
iodane has been studied for the model PhI(O2CCR)2 by NMR,
DFT and through synthetic approaches, including the isolation
and single crystal characterization of the two key species,
PhI(OAc)·BF3 and PhI(OAc)(OTf).26 Surprisingly, no interaction
between PIFA and BF3·Et2O was detected by NMR. Lowering of
the LUMO energy is proposed as key for the activation phenome-
non. As a word of caution, it is important to emphasize that, de-
pending on the reaction, the role of acid additives may go beyond
the activation of the iodane species, through participation in fur-
ther phenomena, e.g. in radical caging, catalyst or substrate acti-
vation or fluoride transfer. Nevertheless, we expect that detailed
understanding of the effect exerted by acids on the hypervalent
iodine reagent will assist researchers in studying the mechanisms
involving such species and in the development of new stoichio-
metric and catalytic oxidative transformations.
́
́
S.; Tellitu, I.; Domınguez, E.; Moreno, I.; SanMartın, R. Tetrahedron Lett.
2003, 44, 3483–3486; c) Kita, Y.; Egi, M.; Ohtsubo, M.; Saiki, T.; Takada
T.; Tohma H. Chem. Commun. 1996, 2225-2226.
(11) a) Dohi, T.; Ito, M.; Morimoto, K.; Iwata. M.; Kita, Y. Angew.
Chem. Int. Ed. 2008, 47, 1301-1304; b) Faggi, E.; Sebastián, R. M.;
Pleixats, R.; Vallribera, A.; Shafir, A.; Rodríguez-Gimeno, A; Ramírez de
Arellano,C. J. Am. Chem. Soc. 2010, 132, 17980-17982; c) Guo, W.;
Faggi, E.; Sebastián, R. M.; Vallribera, A.; Pleixats, R.; Shafir, A. J. Org.
Chem. 2013, 78, 8169-8175.
(12) Kang, Y.-B.; Gade, L. H. J. Am. Chem. Soc. 2011, 133, 3658-
3667.
(13) Silva, L. F.; Lopes, N. P. Tetrahedron Lett. 2005, 46, 6023–6027.
(14) Coordinates for PIDA from CSD (refcode IBZDAC12): Togo, H.;
Nabana, Y.; Yamaguchi, K. J. Org. Chem. 2000, 65, 8391–8394.
(15) a) Ochiai, M.; Sueda, T.; Miyamoto, K.; Kiprof, P.; Zhdankin, V.
V. Angew. Chem. Int. Ed. 2006, 45, 8203–8206; b) Sajith, P. K.; Suresh,
C. H. Inorg. Chem. 2012, 51, 967–977.
(16) An analogous PIFA-BF3 interaction has been invoked as key for
SET processes: Dohi, T.; Ito, M.; Yamaoka, N.; Morimoto, K.; Fujioka
H.; Kita, Y. Tetrahedron 2009, 65, 10797–10815.
(17) Merkushev, E. B.; Novikov, A. N.; Makarchenko, S. S.; Mos-
kal'chuk, A. S.; Glushkova, V. V.; Kogai, T. I.; Polyakova, L. G. Zh. Org.
Khim. 1975, 11, 1259-1263.
(18) Protocol adapted from Zagulyaeva, A. A.; Yusubov, M. S.;
Zhdankin, V. V. J. Org. Chem. 2010, 75, 2119−2122.
ASSOCIATED CONTENT
Supporting Information
NMR data, synthetic procedure, product characterization, single
crystal diffraction studies, DFT methodology employed and Car-
tesian coordinates and energies of all the optimized structures.
This material is available free of charge via the Internet at
(19) See Supporting information for details.
(20) a) Zhdankin, V. V.; Crittell, C. M.; Stang, P. J.; Zefirov, N. S. Tet-
rahedron Lett. 1990, 31, 4821-4825; b) Aprile, A.; Iversen, K. J.; Wilson,
D. J. D.; Dutton, J. L. Inorg. Chem. 2015, 54, 4934−4939; for the related
ArI(OTf)2, also see: c) Farid, U.; Wirth, T. Angew. Chem. Int. Ed. 2012,
51, 3462 –3465; d) Hu, B.; Miller, W. H.; Neumann, K. D.; Linstad, E. J.;
DiMagno, S. G. Chem. Eur. J. 2015, 44, 6394 – 6398.
(21) a) Ochiai, M.; Miyamoto, K.; Yokota, Y.; Suefuji, T.; Shiro, M.
Angew. Chem. Int. Ed. 2005, 51, 75–78; b) Miyamoto, K.; Yokota, Y.;
Suefuji, T.; Yamaguchi, K.; Ozawa, T. Ochiai, M. Chem. Eur. J. 2014, 20,
5448–5452.
AUTHOR INFORMATION
Corresponding Author
*ashafir@iciq.es
ACS Paragon Plus Environment