(2×), 166.4, 160.0 (2×), 159.9 (2×), 159.5, 159.3, 148.3–144.8 (br, 4×),
145.3, 139.0, 138.9, 138.4 (2×), 134.2, 132.9, 132.3, 131.2, 131.4–130.3
(br, 4×), 130.5, 130.4 (2×), 128.4, 128.2, 127.7, 126.9, 122.2, 119.5,
117.4, 111.8, 106.9, 106.8, 106.1, 106.0, 105.4, 105.3, 104.4, 101.6,
101.5, 101.1 (2×), 93.2, 91.0, 71.9 (2×), 70.70, 70.69, 70.54 (2×), 70.47
(2×), 69.9 (2×), 69.6 (2×), 67.4 (2×), 67.1, 67.0, 65.7, 65.5, 59.0 (2×),
29.5, 29.3, 23.7 and 23.4; m/z (HR-MALDI-MS, 2,5-dihydroxybenzoic
acid (DHB)) 4892.3362 (MHϩ, C259H352O85N5 requires 4892.3370).
§ X-ray crystal structure of 17. Crystal data at 203 K for (C47H40-
N4O4Zn)ؒ2 (CH3OH) [Mr = 882.37]: orthorhombic, space group P212121
(no. 19), Dc = 1.339 g cmϪ3, Z = 4, a = 12.3217(2) Å, b = 15.4829(2) Å,
c = 22.9369(2) Å, V = 4375.8(1) Å3. Bruker–Nonius Kappa-CCD dif-
fractometer, MoKα radiation, λ = 0.7107 Å. A red crystal, obtained by
evaporation of a MeOH–CH2Cl2 solution (linear dimensions ca. 0.3 ×
0.15 × 0.13 mm), was mounted at low temperature to prevent evapor-
ation of enclosed solvents. The structure was solved by direct methods
(SIR92)28 and refined by full-matrix least-squares analysis (SHELXL-
J.-M. Lhoste, Eur. J. Biochem., 1984, 145, 555–565; (b) C. K. Chang,
B. Ward, R. Young and M. P. Kondylis, J. Macromol. Sci.,
Pure Appl. Chem., 1988, A25, 1307–1326; (c) I. P. Gerothanassis,
M. Momenteau and B. Loock, J. Am. Chem. Soc., 1989, 111, 7006–
7012; (d ) G. E. Wuenschell, C. Tetreau, D. Lavalette and C. A. Reed,
J. Am. Chem. Soc., 1992, 114, 3346–3355; (e) M. Matsu-ura, F. Tani,
S. Nakayama, N. Nakamura and Y. Naruta, Angew. Chem., Int. Ed.,
2000, 39, 1989–1991; ( f ) A. Kossanyi, F. Tani, N. Nakamura and
Y. Naruta, Chem. Eur. J., 2001, 7, 2862–2872; (g) F. Tani, M. Matsu-
ura, S. Nakayama and Y. Naruta, Coord. Chem. Rev., 2002, 226,
2219–2226.
10 (a) D.-L. Jiang and T. Aida, Chem. Commun., 1996, 1523–1524;
(b) D.-L. Jiang and T. Aida, J. Macromol. Sci., Pure Appl. Chem.,
1997, A34, 2047–2055.
11 F. Diederich and B. Felber, Proc. Natl. Acad. Sci. USA, 2002, 99,
4778–4781.
12 J. P. Collman, L. Fu, A. Zingg and F. Diederich, Chem. Commun.,
1997, 193–194.
13 A. Zingg, B. Felber, V. Gramlich, L. Fu, J. P. Collman and F. Died-
erich, Helv. Chim. Acta, 2002, 85, 333–351.
14 S. Van Doorslaer, A. Zingg, A. Schweiger and F. Diederich,
ChemPhysChem., 2002, 3, 101–109.
15 J. P. Collman and C. A. Reed, J. Am. Chem. Soc., 1973, 95, 2048–
2049.
16 (a) P. Weyermann and F. Diederich, J. Chem. Soc., Perkin Trans. 1,
2000, 4231–4233; (b) P. Weyermann and F. Diederich, Helv. Chim.
Acta, 2002, 85, 599–617.
17 (a) K. Sonogashira, in Metal-catalyzed Cross-coupling Reactions,
eds. F. Diederich, P. J. Stang, Wiley-VCH, Weinheim, 1998, pp. 203–
229; (b) J. S. Lindsey, S. Prathapan, T. E. Johnson and R. W. Wagner,
Tetrahedron, 1994, 50, 8941–8968; (c) C.-S. Chan, A. K.-S. Tse and
K. S. Chan, J. Org. Chem., 1994, 59, 6084–6089; (d ) R. W. Wagner,
T. E. Johnson, F. Li and J. S. Lindsey, J. Org. Chem., 1995, 60, 5266–
5273; (e) J. Li, A. Ambroise, S. I. Yang, J. R. Diers, J. Seth,
C. R. Wack, D. F. Bocian, D. Holten and J. S. Lindsey, J. Am. Chem.
Soc., 1999, 121, 8927–8940.
18 C.-H. Lee and J. S. Lindsey, Tetrahedron, 1994, 50, 11427–11440.
19 P. J. Dandliker, F. Diederich, A. Zingg, J.-P. Gisselbrecht, M. Gross
and A. Louati, Helv. Chim. Acta, 1997, 80, 1773–1801.
20 C.-H. Lee, F. Li, K. Iwamoto, J. Dadok, A. A. Bothner-By and
J. S. Lindsey, Tetrahedron, 1995, 51, 11645–11672.
21 Programme MOLOC P. R. Gerber and K. Müller, J. Comput.-Aided
Mol. Des., 1995, 9, 251–268.
22 (a) C. Hawker and J. M. J. Fréchet, J. Chem. Soc., Chem. Commun.,
1990, 1010–1013; (b) C. J. Hawker and J. M. J. Fréchet, J. Am. Chem.
Soc., 1990, 112, 7638–7647.
23 D. K. Smith, J. Chem. Soc., Perkin Trans. 2, 1999, 1563–1565.
24 K. Shikama, Chem. Rev., 1998, 98, 1357–1373.
2
97),29 using an isotropic extinction correction, and w = 1/[σ2(Fo ) ϩ
2
(0.027P)2 ϩ 1.868P], where P = (Fo ϩ 2Fc2)/3. All heavy atoms were
refined anisotropically (H-atoms isotropically, whereby H-positions are
based on stereochemical considerations). Final R(F) = 0.037, wR(F 2) =
0.076 for 602 parameters and 8737 reflections with I > 2σ(I ) and 2.4 < θ
< 27.5Њ (corresponding R-values based on all 9896 reflections are 0.047
and 0.081 respectively). Absolute structure parameter = 0.002(7). Crys-
tallographic data (excluding structure factors) for the structure reported
in this paper have been deposited with the Cambridge Crystallographic
suppdata/ob/b2/b212468h/ for crystallographic files in .cif or other elec-
tronic format. Copies of the data can be obtained, free of charge, on
application to the CCDC, 12 Union Road, Cambridge, UK CB2 1EZ
(Fax: ϩ44(1223) 336 033; E-mail: deposit@ccdc.cam.ac.uk).
1 (a) E. A. Padlan and W. E. Love, J. Biol. Chem., 1974, 249, 4067–
4078; (b) J. C. Norvell, A. C. Nunes and B. P. Schoenborn, Science,
1975, 190, 568–570; (c) E. J. Heidner, R. C. Ladner and M. F. Perutz,
J. Mol. Biol., 1976, 104, 707–722; (d ) J. Kuriyan, S. Wilz, M. Kar-
plus and G. A. Petsko, J. Mol. Biol., 1986, 192, 133–154;
(e) X. Cheng and B. P. Schoenborn, J. Mol. Biol., 1991, 220, 381–
399.
2 J. P. Collman, J. I. Brauman, T. R. Halbert and K. S. Suslick,
Proc. Natl. Acad. Sci. USA, 1976, 73, 3333–3337.
3 Z. Derewenda, G. Dodson, P. Emsley, D. Harris, K. Nagai,
M. Perutz and J.-P. Reynaud, J. Mol. Biol., 1990, 211, 515–519.
4 (a) M. L. Quillin, R. M. Arduini, J. S. Olson and G. N. Phillips, Jr.,
J. Mol. Biol., 1993, 234, 140–155; (b) G. S. Kachalova, A. N. Popov
and H. D. Bartunik, Science, 1999, 284, 473–476; (c) J. Vojtechovsky,
K. Chu, J. Berendzen, R. M. Sweet and I. Schlichting, Biophys. J.,
1999, 77, 2153–2174.
25 (a) T. D. Smith and J. R. Pilbrow, Coord. Chem. Rev., 1981, 39, 295–
383; (b) S. Van Doorslaer and A. Schweiger, J. Phys. Chem. B, 2000,
104, 2919–2927; (c) H. C. Lee, J. Peisach, A. Tsuneshige and
T. Yonetani, Biochemistry, 1995, 34, 6883–6891.
26 A. Schweiger and G. Jeschke, Principles of pulse electron
paramagnetic resonance, Oxford University Press, Oxford, 2001 .
27 H. C. Lee, M. Ikeda-Saito, T. Yonetani, R. S. Magliozzo and
J. Peisach, Biochemistry, 1992, 31, 7274–7281.
28 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi,
M. C. Burla, G. Polidori and M. Camalli, J. Appl. Crystallogr., 1994,
27, 435.
29 G. M. Sheldrick, SHELXL-97 Program for the Refinement of
Crystal Structures, University of Göttingen, Germany, 1997 .
5 (a) S. Borman, Chem. Eng. News, 1999, 77(49), 31–36; (b) T. G. Spiro
and P. M. Kozlowski, Acc. Chem. Res., 2001, 34, 137–144;
(c) E. Sigfridsson and U. Ryde, J. Inorg. Biochem., 2002, 91, 101–115.
6 T. G. Traylor, N. Koga and L. A. Deardurff, J. Am. Chem. Soc.,
1985, 107, 6504–6510.
7 (a) J. S. Olson, A. J. Mathews, R. J. Rohlfs, B. A. Springer,
K. D. Egeberg, S. G. Sligar, J. Tame, J.-P. Renaud and K. Nagai,
Nature, 1988, 336, 265–266; (b) T. Li, M. L. Quillin, G. N. Phillips,
Jr. and J. S. Olson, Biochemistry, 1994, 33, 1433–1446.
8 K. Nagai, B. Luisi, D. Shih, G. Miyazaki, K. Imai, C. Poyart,
A. De Young, L. Kwiatkowsky, R. W. Noble, S.-H. Lin and N.-T. Yu,
Nature, 1987, 329, 858–860.
9 (a) D. Lavalette, C. Tetreau, J. Mispelter, M. Momenteau and
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 1 0 9 0 – 1 0 9 3
1093