2624 Ribeiro et al.
Macromolecules, Vol. 37, No. 7, 2004
Figure 10. The curves show a minimum around 110 °C,
indicating that this value is the ideal one to perform
the annealing. The lowest final fictive temperature is
reached for a cooling rate of 2 °C/min and annealing at
110 °C for 15 min. The Tf′ value in this case is 109 °C,
lower than that one achieved when cooling at 2 °C/min
and close to the one achieved when cooling at 1 °C/min
(Figure 9). The total time of exposure to the corona
discharge process will be in this case of 65 min, which
guarantees minor sample surface damage.
As a measure of the fragile characteristic of MMA-
DR13, revealed in the plot of Figure 6, one can estimate
the fragility index, defined in terms of the WLF equation
as:41
and F. D. Nunes for the help with electrooptic experi-
mental setup.
Refer en ces a n d Notes
(1) Marks, T. J .; Ratner, M. A. Angew. Chem., Int. Ed. Engl.
1995, 34, 155-173.
(2) Mendonc¸a, C. R.; Dhanabalan, A.; Balogh, D. T.; Misoguti,
L.; dos Santos, D. S., J r.; Pereira da Silva, M. A.; Giacometti,
J . A.; Z´ılio, S. C.; Oliveira, O. N., J r. Macromolecules 1999,
32, 1493-1499.
(3) Singer, K. D.; Sohn, J . E.; Lalama, S. J . Appl. Phys. Lett.
1986, 49, 248-250.
(4) Ribeiro, P. A.; Balog, D. T.; Giacometti, J . A. IEEE Trans.
Dielect. El. In. 2000, 7, 572-577.
(5) Giacometti, J . A.; Oliveira, O. N., J r. IEEE Trans. Elec. Insul.
1992, 27, 924-943.
(6) Hampsch, H. L.; Yang, J .; Wong, G. K. J .; Torkelson, J . M.
Macromolecules 1990, 23, 3640-3654.
∂(log(τ/τg))
mWLF
)
(11)
(7) Kohlraush, R. Ann. Phys. Chem. 1854, 91, 179.
(8) Williams, G.; Watts, D. C. Trans. Faraday Soc. 1970, 66, 80.
(9) van der Vorst, M. C. P. J .; van Cassel, R. A. P. Macromol.
Symp. 1995, 90, 47.
[
]
∂(Tg/T)
T)Tg
which according to eq 9 gives:
(10) Dissado, L. A.; Hill, D. H. Nature (London) 1979, 279, 685.
(11) Dureiko, R. D.; Schuele, D. E.; Singer, K. D. J . Opt. Soc. Am.
B 1998, 15, 338-350.
(12) Privalko, V. P. J . Non-Cryst. Solids 1999, 255, 259-263.
(13) Philips, J . C. Rep. Prog. Phys. 1996, 59, 1133.
(14) Knoff, W. F.; Hopkins, I. L.; Tobolsky, A. V. Macromolecules
1971, 4, 750-754.
(15) Monteiro, E. E. C.; Fonseca, J . L. C. J . Appl. Polym. Sci. 1997,
65, 2227-2236.
(16) Williams, M. L.; Landel, R. F.; Ferry, J . D. J . Am. Chem. Soc.
1955, 77, 3701.
(17) Ferry, J . D. In Viscoelastic Properties of Polymers, 3rd ed.;
Wiley: New York, 1980.
(18) Dhanabalan, A.; Balogh, D. T.; Riul, A., J r.; Giacometti, J .
A.; Oliveira, O. N., J r. Thin Solid Films 1998, 323, 257-264.
(19) Haridoss, S.; Perlman, M. M. J . Appl. Phys. 1984, 55, 1332-
1338.
Cg
1Tg
C2g
mWLF
)
(12)
From this equation, considering the values of Cg1 and
Cg in Table 1 and those of Tg, one obtain the fragility
in2dexes of 120 ( 50 and 90 ( 40 for MMA-DR13(43
wt %) and MMA-DR13(9 wt %), respectively. The large
values confirm the fragile MMA-DR13 glass former is.
The replacement of the (-COOCH3) group by the
chromophore group in the side chain seems confer a less
fragile behavior since the index is lower than that of
PMMA, which is 145.41
(20) Raposo, M.; Ribeiro, P. A.; Marat Mendes, J . N. Ferroelectrics
1992, 34, 235-240.
The fragility of the glass former has been correlated
with the KWW stretching b parameter.41 The general
trend is that a glass former presenting large values of
b tend to present fragile behavior, i.e., a small fragility
index. In this way one may expect larger values of b
parameter for MMA-DR13 than that obtained for
PMMA, although both polymeric systems have similar
glass transition temperatures. The values of b at the
glass transition temperature are claimed to be domi-
nated by the numbers 0.43 and 0.6 respectively associ-
ated with long-range Coulombic interactions and short-
range interactions.13 As a consequence, the expected
values for long-chain polymeric systems would be of
0.43, accounting for long-range Coulombic intrachain
interactions associated with the backbone relaxation.
However, exceptions are known for polymeric chains
having side groups that somehow actively participate
in the relaxation process. Normally, side groups are
known to increase the interchain interactions since they
act as spacers or even add rotational mode to the
interchain interaction.13 In this situation b(Tg) is ex-
pected to be closer to the short-range forces limit, i.e.,
0.6. This seems to be the case for MMA-DR13 copoly-
mer with b(Tg) of 0.55 ( 0.05. This effect should indeed
be remarkable in MMA-DR13, since in PMMA b(Tg)
falls in opposite side with a value of 0.34.41 This result
is consistent with a strong contribution of the chro-
mophore group for the primary R relaxation.
(21) Singer, K. D.; Lalama, S. L.; Sohn, J . E.; Small, R. D. In
Nonlinear Properties of Organic Molecules and Crystals;
Chemla, D. S., Zyss, E. J ., Eds.; Academic Press: New York,
1987; Vol. II, Chapter 81, p 444.
(22) Moynihan, C. T.; Eastel, A. J .; DeBolt, M. A.; Tucker, J . J .
Am. Ceram. Soc. 1976, 59, 12.
(23) Goodson, T., III; Wang, C. H. Macromolecules 1993, 26, 1837-
1840.
(24) Dhinojwala, A.; Wong, G. K.; Torkelson, J . M. Macromolecules
1993, 26, 5943-5953.
(25) Weiss, G. H.; Bendler, J . T.; Dishon, M. J . Chem. Phys. 1985,
83, 1424-1427.
(26) McCrum, N. G.; Read, B. E.; Williams, G. In Anelastic and
Dielectric Relaxation in Polymeric Solids; Wiley: London,
1967.
(27) Vilgis, T. A. Phys. Rev. B 1993, 47, 2882-2885.
(28) Williams, M. L.; Landel, R. F.; Ferry, J . D. J . Am. Chem. Soc.
1955, 77, 3701.
(29) Toll, A. Q.; Eichlin, C. G. J . Am. Ceram. Soc. 1931, 14, 276.
(30) Toll, A. Q. J . Am. Ceram. Soc. 1946, 29, 240.
(31) Toll, A. Q. J . Am. Ceram. Soc. 1948, 31, 177.
(32) Narayanaswamy, O. S. J . Am. Ceram. Soc. 1971, 54, 491.
(33) Moynihan, C. T.; Easteal, A. J .; Debolt, M. A.; Tucker, J . J .
Am. Ceram. Soc. 1976, 59, 12-16.
(34) Hodge, I. M.; Berens, A. R. Macromolecules 1982, 15, 762-
770.
(35) Vogel, H. Phys. Z. 1921, 22, 645.
(36) Tammann, G.; Hesse, W. Z. Anorg. Allg. Chem. 1926, 156,
245.
(37) Fulcher, G. S. J . Am. Ceram. Soc. 1925, 8, 339.
(38) Angell, C. A. Polymer 1997, 38, 6261-6266.
(39) Kaatz, P.; Preˆtre, P.; Meier, U.; Stalder, U.; Bosshard, C.;
Gu¨nter, P.; Zysset, B.; Sta¨helin, M.; Ahlheim, M.; Lehr, F.
Macromolecules 1996, 29, 1666-1678.
(40) Preˆtre, P.; Kaatz, P.; Bohren, A.; Gu¨nter, P.; Zysset, B.;
Ahlheim, M.; Sta¨helin, M.; Lehr, F. Macromolecules 1994,
27, 5476-5486.
(41) Bo¨hmer, R.; Ngai, K. L.; Angell, C. A.; Plazek, D. J . J . Chem.
Phys. 1993, 99, 4201-4209.
Ack n ow led gm en t. The authors thank FAPESP,
CAPES, and CNPq, Brazil, and Fundac¸a˜o Cieˆncia e
Tecnologia-PRAXIS XXI, Portugal, for financial sup-
port and to A. C. Hernandez for gently supplying high-
quality electrooptic calibration crystals and to S. C. Zilio
MA035714J