10.1002/anie.201808299
Angewandte Chemie International Edition
COMMUNICATION
future challenge in the development of new processes. For pyrrole
11b, which is arylated at C3, C-H alkenylation to provide 12d was
highly regioselective. Using L-4 we have also found that
dehydrogenative C-C bond formation can be combined with a
further dehydrogenation event. When enamide 13 was exposed
to optimized conditions dehydrogenative aromatization (to 1n)
was followed by C-H alkenylation, which provided 4na in 60%
yield (Scheme 3B).[22]
funded by the EPSRC (EP/G036764/1) (studentship to G.E.M.C).
J.F.B. is indebted to the Royal Society for a University Research
Fellowship.
Keywords: iridium, C-H activation, arylation, styrene
[1] Reviews: a) R. F. Heck, Acc. Chem. Res. 1979, 12, 146-151; b) W. Cabri,
I. Candiani, Acc. Chem. Res. 1995, 28, 2-7; c) The Mizoroki-Heck Reaction;
M. Oestreich, Ed.; Wiley: Chichester, U.K., 2009.
[2] For example, see: a) A. F. Littke, G. C. Fu, J. Am. Chem. Soc. 2001, 123,
6989-7000; b) P. M. Murray, J. F. Bower, D. K. Cox, E. K. Galbraith, J. S.
Parker, J. B. Sweeney, Org. Process Res. Dev. 2013, 17, 397-405.
[3] Selected examples: a) W. Cabri, I. Candiani, A. Bedeschi, R. Santi, J. Org.
Chem. 1992, 57, 3558-3563; b) J. Ruan, J. A. Iggo, N. G. Berry, J. Xiao, J.
Am. Chem. Soc. 2010, 132, 16689-16699.
It is pertinent to comment on mechanistic details of the
processes described here.
A control experiment involving
resubjection of hydroarylation product 3aa to optimized C-H
arylation conditions did not provide alkene 4aa. This result
supports the idea that 4aa is generated via a carbometallative
[4] a) L. Qin, X. Ren, Y. Lu, Y. Li, J. Zhou, Angew. Chem. Int. Ed. 2012, 51,
5915-5919; b) Y. Zou, L. Qin, X. Ren, Y. Lu, Y. Li, J. Zhou, Chem. Eur. J.
2013, 19, 3504-3511; c) L. Qin, H. Hirao, J. Zhou, Chem. Commun. 2013,
49, 10236-10238.
pathway (I to III to
4 in Scheme 1B) rather than via
dehydrogenation of 3aa. C-H arylation of deuterio-2c with
acetanilide 1q resulted in scrambling of the deuterium labels in
product deuterio-4qc and in recovered deuterio-2c and 1q. This
suggests that reversible styrene hydrometallation (I to II) is also
operative under optimized conditions (Scheme 4). Accordingly,
the minor alkene hydroarylation products (e.g. 3aa) might arise
via either C-C reductive elimination from II or C-H reductive
elimination from III. At the present stage we have been unable to
[5] Seminal studies: a) I. Moritani, Y. Fujiwara, Tetrahedron Lett. 1967, 8,
1119-1122; b) Y. Fujiwara, I. Moritani, M. Matsuda, S. Teranishi,
Tetrahedron Lett. 1968, 9, 3863-3865; c) Y. Fujiwara, I. Moritani, S. Danno,
R. Asano, S. Teranishi, J. Am. Chem. Soc. 1969, 91, 7166-7169. Reviews:
d) L. Zhou, W. Lu, Chem. Eur. J. 2014, 20, 634-642; e) J. L. Bras, J. Muzart,
Chem. Rev. 2011, 111, 1170-1214; f) E. M. Beccalli, G. Broggini, M.
Martinelli, S. Sottocornola, Chem. Rev. 2007, 107, 5318-5365. Examples
of high yielding styrene β-(hetero)arylation: g) C. Aouf, E. Thiery, J. L. Bras,
J. Muzart, Org. Lett. 2009, 11, 4096-4099; h) A. García-Rubia, M. ꢀ.
Fernández-Ibáñez, R. Gómez Arrayás, J. C. Carretero, Chem. Eur. J. 2011,
17, 3567-3570; i) M. Yu, Z. Liang, Y. Wang, Y. Zhang, J. Org. Chem. 2011,
76, 4987-4994; j) C. Huang, B. Chattopadhyay, V. Gevorgyan, J. Am.
Chem. Soc. 2011, 133, 12406-12409; k) P. Gandeepan, C.-H. Cheng, J.
Am. Chem. Soc. 2012, 134, 5738-5741; l) X. Cong, J. You, G. Gao, J. Lan,
Chem. Commun. 2013, 49, 662-664; m) Wang, P.; Verma, P.; Xia, G.; Shi,
J.; Qiao, J. X.; Tao, S.; Cheng, P. T. W.; Poss, M. A.; Farmer, M. E.; Yeung,
K.-S.; Yu, J.-Q. Nature 2017, 551, 489. Metals other than palladium can
also be used (see reference 10).
discriminate
these
pathways,
such
that
meaningful
rationalizations for product selectivity in each case cannot be
made.
[6] a) M. Ghosh, A. Naskar, S. Mitra, A. Hajra, Eur. J. Org. Chem. 2015, 715-
718; b) Y. Yang, K. Cheng, Y. Zhang, Org. Lett. 2009, 11, 5606-5609.
[7] For the processes described here, a classical alternative requires a) the
preparation of an acid chloride, b) its use in ortho-selective Friedel-Crafts
acylation of an anilide and c) olefination of the F/C product. For selected
recent alternative approaches to α-arylated styrenes, see: a) J. Tang, D.
Hackenberger, L. J. Goossen, Angew. Chem. Int. Ed. 2016, 55, 11296-
11299; b) S. Agasti, A. Dey, D. Maiti, Chem. Commun. 2016, 52, 12191-
12194.
[8] a) G. E. M. Crisenza, O. O. Sokolova, J. F. Bower, Angew. Chem. Int. Ed.
2015, 54, 14866-14870; b) S. Grélaud, P. Cooper, L. Feron, J. F. Bower, J.
Am. Chem. Soc. 2018, 140, DOI: 10.1021/jacs.8b04627. For related ketone
and benzamide directed processes, see: c) G. E. M. Crisenza, N. G.
McCreanor, J. F. Bower, J. Am. Chem. Soc. 2014, 136, 10258-10261.
[9] A mechanistically similar process allows the internal C-H heteroarylation of
α-olefins, but styrenes afford β-heteroarylation products: C. S. Sevov, J. F.
Hartwig, J. Am. Chem. Soc. 2014, 136, 10625-10631.
Scheme 4. A deuterium labelling study.
In summary, we outline a unique Ir-catalyzed method for the α-
selective C-H arylation of styrenes. This dual C-H
functionalization protocol offers a regioisomeric alternative to the
well-established Pd-catalyzed Fujiwara-Moritani reaction. Efforts
to broaden the utility of the method are ongoing and the results of
these studies will be reported in due course.
[10] For a review on oxidative couplings of C-H bonds, see: C. Liu, J. Yuan, M.
Gao, S. Tang, W. Li, R. Shi, A. Lei, Chem. Rev. 2015, 115, 12138-12204.
[11] D. Xing, G. Dong, J. Am. Chem. Soc. 2017, 139, 13664-13667.
[12] D. A. Singleton, A. A. Thomas, J. Am. Chem. Soc. 1995, 117, 9357-9358.
[13] This interpretation must be treated with caution because we have been
unable to devise an acceptable computational model; using a styrene (2c)
as the limiting component, a significant 13C KIE is observed for C2 but not
C1 (see the SI).
ACKNOWLEDGMENTS
We thank the University of Bristol School of Chemistry X-ray
crystallography service for analysis of 4ba and 5e. We thank the
EPSRC (EP/M507994/1) and AstraZeneca (studentship to P.C.),
and the Bristol Chemical Synthesis Doctoral Training Centre,
[14] H. Takano, K. S. Kanyiva, T. Shibata, Org. Lett. 2016, 18, 1860-1863.
This article is protected by copyright. All rights reserved.