gave (ϩ)-(3R,4S)-[4-2H]-chroman-3-ol 35D (1.04 g, 94%), mp
95–96 ЊC; [α]D ϩ21.5 (c 2.1, CHCl3). Enantiomers of alcohol
35D were spectrally indistinguishable from the racemic sample.
The deuterium incorporation was found to be > 98% (by
1H-NMR) in both the enantiomers.
hexane) separation gave (Ϫ)-[1-2H]-(1S,2R)-1,2-dihydroxy-
indane 13D (Rf 0.1), [1-2H]- and [3-2H]-(1R)-inden-1-ol 14D/14ЈD
(Rf 0.5) and 1-indanone 15, identified by comparison with an
authentic sample (0.02 g, 4%, Rf 0.8).
(؊)-[1-2H]-(1S,2R)-1,2-Dihydroxyindane 13D. Colourless
crystals (0.11 g, 18%), mp 95–96 ЊC (from CHCl3–hexane) (lit.,5
mp 95–96 ЊC); [α]D Ϫ21 (c 0.4, CHCl3); δH (500 MHz; CDCl3)
2.95 (1H, dd, J3,2 3.7, J3,3Ј 16.3, 3-H), 3.12 (1H, dd, J3Ј,2 5.7,
J3Ј,3 16.3, 3Ј-H), 4.42 (1H, dd, J2,3 3.7, J2,3Ј 5.7, 2-H), 7.21–7.28
(3H, m, Ar-H) and 7.39–7.41 (1H, m, Ar-H); ee (ca. 38%) by
CSPHPLC analysis (Chiralcel OD column).
( )-[4-2H]-3-(p-Toluenesulfonyloxy)chromane 36D. p-Toluene-
sulfonyloxy chloride (1.17 g, 6.1 mmol) was added to a cooled
solution of [4-2H]-3-chromanol 35D (0.62 g, 4.1 mmol) in dry
pyridine (4 cm3); the reaction mixture was stirred (24 h). Pyrid-
ine was removed (reduced pressure), water (10 cm3) was added
to the residue and the reaction mixture extracted with CH2Cl2
(2 × 30 cm3). The extract was dried (Na2SO4) and concentrated
under reduced pressure to yield ( )-[4-2H]-3-(p-toluene-
sulfonyloxy)chromane 36D (0.94 g, 75%), mp 91–92 ЊC (from
Et2O–hexane) (Found: C, 62.9; H, 5.2. C16H15DO4S requires C,
63.0; H, 5.6%); δH (500 MHz, CDCl3) 2.46 (3 H, s, Me), 2.95
(1 H, br s, 4-H), 4.10 (2 H, m, 2-H), 4.95 (1 H, m, 3-H), 6.81
(1 H, d, J8,7 7.9, 8-H), 6.87 (1 H, m, 6-H), 6.96 (1 H, d, J5,6 7.1,
5-H), 7.11 (1 H, m, 7-H), 7.36 (2 H, d, J 8.0, Ar-H), 7.81 (2 H, d,
J 8.0, Ar-H).
[1-2H]- and [3-2H]-(1R)-Inden-1-ol 14D/14ЈD. Colourless
needles (0.045 g, 8%), unstable sample, mp 83–84 ЊC (from
ether–hexane) (Found: C, 81.5; H, 6.5. C9H7DO requires C
81.2; H, 6.8%); [α]D Ϫ70 (c 0.4, CHCl3) (lit.,24 [α]D Ϫ178 but
found to increase on purification to [α]D Ϫ249); δH(500 MHz;
CDCl3) 5.21 (1H, 43% D, br s, 1-H), 6.42 (1H, dd, J2,1 1.8,
J2,3 5.6, 2-H), 6.75 (1H, 57% D, d, J3,2 5.6, 3-H), 7.24 (3H, m,
Ar-H), 7.52 (1H, d, J 6.9, Ar-H); ee (ca. 28%) by CSPHPLC
analysis (Chiralcel OB column).
(؉)-(3S,4R)-[4-2H]-3-(p-Toluenesulfonyloxy)chromane 36D.
(Ϫ)-(3S,4R)-[4-2H]-3-chromanol 35D (1.30 g, 8.6 mmol) when
reacted with p-toluenesulfonyl chloride gave (ϩ)-(3S,4R)-[4-
2H]-3-(p-toluenesulfonyloxy)chromane 36D (2.00 g, 76%), mp
94–95 ЊC, [α]D ϩ 6.4 0.5 (c 1.65, CHCl3).
Biotransformation of 5-bromoindene 16
Biotransformation (P. putida UV4, 7 h) of 5-bromoindene 16
(0.150 g, 0.77 mmol) and extraction (EtOAc) of the centrifuged
culture medium yielded two products; these on separation by
PLC (60% Et2O in pentane) gave 6-bromoindan-1-one 23 (0.007
g, 4%, Rf 0.5) and (1R,2S)-5-bromoindane-1,2-diol 18 (Rf 0.1).
(؊)-(3R,4S )-[4-2H]-3-(p-Toluenesulfonyloxy)chromane 36D.
(ϩ)-(3R,4S)-[4-2H]-3-chromanol 35D (1.06 g, 7.0 mmol) on
reaction with p-toluenesulfonyl chloride gave (Ϫ)-(3R,4S)-[4-
2H]-3-(p-toluenesulfonyloxy)chromane 36D, mp 94–95 ЊC; [α]D
Ϫ6.0 0.5 (c 1.44, CHCl3).
6-Bromoindan-1-one 23. It was spectrally identical to a
sample obtained from the biotransformation of 6-bromoindene
17.
( )-[4-2H]-Chromane 30D. Lithium aluminium hydride (0.60
g, 15.8 mmol) was added to a solution of racemic [4-2H]-3-
(p-toluenesulfonyloxy)chromane 36D (0.66 g, 2.2 mmol) in dry
THF (10 cm3) and the reaction mixture heated (24 h) under
reflux. The cooled reaction mixture was filtered after decom-
position of the complex by addition of water (1.5 cm3). The
filtrate, combined with the Et2O washings, was dried (Na2SO4),
concentrated under reduced pressure and the residue purified
by flash column chromatography on silica gel (Et2O–hexane)
followed by distillation under reduced pressure to yield ( )-[4-
2H]-chromane 30D (0.21 g, 72%), bp 80 ЊC/0.02 mm Hg (Found:
Mϩ, 135.0794. C9H9DO requires 135.0794); δH (300 MHz,
CDCl3) 2.01 (2 H, m, 3-H), 2.77 (1 H, br s, 4-H), 4.19 (2 H, m,
2-H), 6.81 (2 H, m, 6-H and 8-H), 7.05 (2 H, m, 5-H and 7-H);
m/z (%) 136 (M ϩ 1ϩ, 18), 135 (Mϩ, 100), 134 (23), 120 (11), 107
(18), 79 (28). The deuterium atom incorporation (≥ 98%) at C-4
was determined by 1H- and 2H-NMR spectral analyses.
(1R,2S )-5-Bromo-1,2-dihydroxyindane 18. White crystals
(0.07 g, 42%), mp 160–161 ЊC (from CH2Cl2); [α ]D ϩ 54.1
(c 0.77, MeOH) (Found: C, 46.8; H, 3.7. C9H9BrO2 requires C
46.8; H, 3.9%); δH(500 MHz, CDCl3) 2.30 (1 H, d, JOH,1 5.2,
OH), 2.54 (1 H, d, JOH,2 7.2, OH), 2.91(1 H, dd, J3,2 3.1,
J3,3Ј 16.4, 3-H), 3.06 (1 H, dd, J3Ј,2 5.6, J3Ј,3 16.4, 3Ј-H), 4.54 (1 H,
m, 2-H), 5.02 (1 H, dd, J1,2 6.1, J1,OH 5.2, 1-H), 7.12 (1 H, d,
J4,5 8.0, 4-H), 7.40 (1 H, m, J5,4 8.0, 5-H), 7.57 (1 H, s, 7-H);
electronic CD data: λ 226 nm (∆ε Ϫ2.571), 203 nm (∆ε 13.58);
ee (ca. 46%) by 1H-NMR analysis of the MEBBA derivative.
Biotransformation of 6-bromoindene 17
Biotransformation (P. putida UV4, 7 h) of 6-bromoindene 17
(0.200 g, 1 mmol) and extraction (EtOAc) of the centrifuged
culture medium yielded two products; separation by PLC
(30% Et2O in hexane) gave the less polar (Rf 0.45) bioproduct,
6-bromoindan-1-one 23 (0.061 g, 28%) which was identified by
spectral comparison with an authentic sample. The second,
more polar (Rf 0.35) product was found to be (1S)-6-bromo-
inden-1-ol 22.
(؊)-(4S )-[4-2H]-Chromane
30D.
(ϩ)-(3S,4R)-[4-2H]-3-
(p-Toluenesulfonyloxy)chromane 36D (1.95 g, 6.4 mmol, [α]D ϩ
6.4) was treated with excess lithium aluminium hydride to yield
(4S)-[4-2H]-chromane 30D (0.64 g, 74%), bp 80 ЊC/0.02 mm Hg;
[α]D Ϫ1.7 (c 0.32, CHCl3).
(؉)-(1S )-6-Bromoinden-1-ol 22. Colourless crystals (0.035 g,
16%), mp 56 ЊC (hexane) (Found: C, 51.1; H, 3.4. C9H7BrO
requires C, 51.2; H, 3.3%); [α]D ϩ 185.3 (c 0.8, CHCl3); δH(300
MHz, CDCl3) 1.72 (1 H, d, JOH,1 8.9, OH), 5.16 (1 H, m,
J1,OH 7.4, 1-H), 6.39 (1 H, dd, J2,1 1.6, J2,3 5.6, 2-H), 6.68 (1 H, d,
J3,2 5.6, 3-H), 7.09 (1 H, d, J4,5 7.9, 4-H), 7.40 (1 H, dd, J5,4 7.9,
J5,7 1.4, 5-H), 7.64 (1 H, d, J7,5 1.4, 7-H); electronic CD data:
λ 270 nm (∆ε 0.928), 230 nm (∆ε Ϫ1.796), 204 nm (∆ε 7.779),
198 nm (∆ε 7.298); > 98% ee by CSPHPLC analysis (Chiralcel
OB column).
(؉)-(4R)-[4-2H]-Chromane
30D.
(Ϫ)-(3R,4S)-[4-2H]-3-
(p-Toluenesulfonyloxy)chromane 36D (1.45 g, 4.8 mmol, [α]D
Ϫ6.0) afforded (4R)-[4-2H]-chromane 30D (0.50 g, 78%), [α]D
ϩ1.0 (c 0.54, CHCl3). (Ϫ)-(4S)- and (ϩ)-(4R)-enantiomers of
1
[4-2H]-chromane 30D had identical H-NMR spectra (≥ 98%
2H) and mirror image CD spectra.
Biotransformation of [3-2H]-indene 8D
Biotransformation of chromane 30
Biotransformation (P. putida UV4, 8 h) of [3-2H]-indene 8D
(0.47 g, 4.1 mmol) and extraction (EtOAc) of the centrifuged
culture medium yielded three products. PLC (40% Et2O in
Biotransformation (P. putida UV4) of chromane 30 (0.150 g,
1.12 mmol) and extraction (EtOAc) of the centrifuged culture
O r g . B i o m o l . C h e m . , 2 0 0 3 , 1, 1 2 9 8 – 1 3 0 7
1305