Green Chemistry
DOI: 10.1039/C5GC00P46a5gAe 4 of 5
COMMUNICATION
Journal Name
representing an efficient green alternative to toluene/p-TSA.
Accordingly, our results disclose an environmentally
sustainable approach to the synthesis of a particularly important
class of organic compounds as well as an alternative approach
to reactions run under Dean-Stark conditions. Additionally,
besides underlying the possibility of an easy and efficient
recovery of CPME, it is worth noting that the employment as
acidic catalysts of low impact, highly economical, recyclable
and non soluble ammonium salts allowed the set up of a
particularly simple and efficient work up with a reduced
production of wastes.
10. The employment of 3 mol% of p-TSA as an acidic catalyst
afforded a comparable result, whilst the employment of
catalytic amounts of zeolite ZSM-5 or molecular sieves (3 Ǻ)
led to poorer conversions.
11. R. Chaudhuri, G. Puccetti, F. Marchio, Z. Lascu, Methods for
stabilizing ingredients within cosmetics, personal care and
household products, US2005/244349 A1, 2005.
12. E. F. Morand, M. N. Iskander, C. E. Skene, Novel methods for
the treatment of inflammatory deseases, WO2004/89927 A1,
2004.
13. See, for example: D. Hernández, K. B. Lindsay, L. Nielsen, T.
Mittag, K., Bjerglund, S., Friis, R. Mose, T. Skrydstrup, J.
Org. Chem., 2010, 75, 3283.
Acknowledgment
Financial support from the Regione Autonoma della Sardegna,
through the Legge Regionale 07/09/2007 (code CRP-59740), is
gratefully acknowledged.
14. Besides what already reported in Table 1, the efficiency of
NH4HSO4 as a catalyst in the acetalization of aromatic
ketones is outlined in comparative experiments related to the
synthesis of compound 3la (Scheme 1).
Notes and references
1. T. W. Green, P. G. M. Wuts, in Protective Groups in Organic
Synthesis, Wiley, New York, 3rd edn., 1999, p. 297.
2. B. Bartel, R. Hunter, J. Org. Chem., 1993, 58, 6756.
3. H. Surburg and J. Panten, Common Fragrance and Flavour
Materials, Wiley-VCH Weinheim, 5th edn., 2006, p. 12.
4. A. Hermann, Profragrances and Properfumes, in The
Chemistry and Biology of Volatiles, A. Hermann Ed., Wiley,
Chichester, 2010, p. 333.
15. U. Azzena, F. Kondrot, L. Pisano, M. Pittalis, Appl.
Organometal. Chem., 2012, 26, 180, and references therein.
16. H. Hoshino, K. Sakakibara, K. Watanabe, Chem. Lett., 2008,
37, 774.
a
Dipartimento di Chimica e Farmacia, Università di Sassari, via Vienna
2, 07100 – Sassari (Italy)
‡Current Address: Department of Pharmaceutical Chemistry, University
of Vienna, Althanstrasse 14, Vienna, Austria
5. See, for example: a) C. Gonzalez-Arellano, S. Deb, R. Luque,
Catal. Sci. Technol., 2014,
4, 4242; b) B. Mallesham, P.
Electronic Supplementary Information (ESI) available: General method,
synthetic procedures, characterization data of all compounds including
copies of 1H and 13C NMR of previously not completely described
compounds. See DOI: 10.1039/c000000x/
Sudarsanam, G. Raju, B. M. Reddy, Green. Chem., 2013, 15
478; c) J. Deutsch, A. Martin, H. Lieske, J. Catal., 2007, 245
,
,
428; d) M. J. Climent, A. Corma, A. Velty, Appl. Catal. A:
Chem., 2004, 263 155, and references therein; e) S.
,
Palaniappan, P. Narander, C. Saravanan, V. J. Rao, Synlett,
2003, 1793.
6. For a review, see: a) K. Watanabe, N. Yamagiwa, Y. Torisawa,
Org. Proc. Res. Dev., 2007, 11, 251; for recent examples, see:
b) C. Gozlan, R. Lafon, N. Duguet, A. Redl, M. Lemaire, RSC
Adv., 2014, 4, 50653; c), K. Skowerki, J. Biatecki, A. Tracz,
T. K. Olzewski, Green Chem., 2014, 16, 1125; d) A. Mouret,
L. Leclercq, A. Mühlbauer, V. Nardello-Rataj, Green Chem.,
2014, 16, 269; e) V. Mallardo, R. Rizzi, F. C. Sassone, R.
Mansueto, F. M. Perna, A. Salomone, V. Capriati, Chem.
Commun., 2014, 50, 8655; f) M. Zhang, T. Jia, H. Yin, P. J.
Carroll, E. J. Schelter, P. J. Walsh, Angew. Chem. Int. Ed.,
2014, 53, 10755.
7. Positive azeotrope toluene/H2O: bp 80 °C, azeotropic
composition: toluene/H2O = 79.8:20.2, w/w).
-
+
=
9.25: J. A. Dean, Lange’s Handbook of Chemistry, McGraw-
Hill New York, 15th edn., 1999, Table 8.7.
9. Positive azeotrope 2-MeTHF/H2O: bp 71 °C, azeotropic
composition: 2-MeTHF/H2O = 89.4:10.6, w/w); for recent
applications of this biomass-derived solvent in organic
chemistry, see: V. Pace, P. Hoyos, L. Castoldi, P. Dominguez
de María, A. R. Alcantara, ChemSusChem, 2012, 5, 1369.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 2012