toaccessketonessuchasB stereoselectively. Thisapproach
was inspired by work described by A. Suzuki10 and H. C.
Brown11 and later elaborated by others for asymmetric
transformations.12ꢀ14 However, existing conditions af-
forded at best ∼2% yield when an unprotected indole
was present in the enone.15 The use of low molecular
weight boronic esters was problematic for reasons of
volatility, hydrolytic instability, and loss of purity during
storage. Additionally, the unreactive indole substrate 1
(Table 1) required long reaction times that led to the
production of various side products.
Scheme 1. Formation of an R-Branched Indole
methods, we have developed a catalytic enantioselective
addition of vinyl nucleophiles to indolo enones.
As unprotected indolo enones are generally incompati-
ble with strongly basic organometallic agents,9 we chose to
investigate neutral organocatalytic 1,4-addition conditions
Table 1. Optimization of the BINOL-Catalyzed Conjugate
Addition of 2-cis-Butenylboronic Acid
(5) (a) Kharasch, M. S.; Tawney, P. O. J. Am. Chem. Soc. 1941, 63,
2308–2316. (b) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.;
Miyaura, N. J. Am. Chem. Soc. 1998, 120, 5579–5580. (c) Christoffers,
€
J.; Koripelly, G.; Rosiak, A.; Rossle, M. Synthesis 2007, 1279–1300. (d)
Harutyunyan, S. R.; Hartog, den, T.; Geurts, K.; Minnaard, A. J.;
Feringa, B. L. Chem. Rev. 2008, 108, 2824–2852. (e) Nishimura, T.;
Sawano, T.; Hayashi, T. Angew. Chem., Int. Ed. 2009, 48, 8057–8059. (f)
Thaler, T.; Knochel, P. Angew. Chem., Int. Ed. 2009, 48, 645–648. (g)
Kikushima, K.; Holder, J. C.; Gatti, M.; Stoltz, B. M. J. Am. Chem. Soc.
2011, 133, 6902–6905. (h) Jensen, K. B.; Thorhauge, J.; Hazell, R. G.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2001, 40, 160–163. (i) Austin,
J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 1172–1173. (j)
Rowland, G. B.; Rowland, E. B.; Liang, Y.; Perman, J. A.; Antilla, J. C.
Org. Lett. 2007, 9, 2609–2611. (k) Lee, S.; MacMillan, D. W. C. J. Am.
Chem. Soc. 2007, 129, 15438–15439. (l) Viswanathan, R.; Smith, C. R.;
Prabhakaran, E. N.; Johnston, J. N. J. Org. Chem. 2008, 73, 3040–3046.
(m) Ganesh, M.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 16464–16465.
(n) Zheng, W.; Zhang, Z.; Kaplan, M. J.; Antilla, J. C. J. Am. Chem. Soc.
2011, 133, 3339–3341.
yield
entry
1
R0
additive
none
solvent
CH2Cl2,
(SM)a
eeb
I
<2% (85%) n.d.c
25 °C
THF, reflux
2
3
I
I
none
none
<2% (96%) n.d.c
ClCH2CH2Cl, 21% (77%) n.d.c
70 °C
~
(6) (a) Nielsen, M.; Jacobsen, C. B.; Paixao, M. W.; Holub, N.;
~
4
5
6
7
8
C6F5
C6F5
C6F5
C6F5
C6F5
none
ClCH2CH2Cl, 32% (63%) 98%
Jørgensen, K. A. J. Am. Chem. Soc. 2009, 131, 10581–10586. (b) Paixao,
M. W.; Holub, N.; Vila, C.; Nielsen, M.; Jørgensen, K. A. Angew. Chem.,
70 °C
Int. Ed. 2009, 48, 7338–7342.
Cs2CO3
ClCH2CH2Cl, 11% (81%) n.d.c
(7) (a) Bergman, J.; Koch, E.; Pelcman, B. J. Chem. Soc., Perkin
Trans. 1 2000, 2609–2614. (b) Kidwai, M.; Mohan, R.; Rastogi, S. Synth.
Commun. 2003, 33, 3747–3759. (c) Ma, S.; Yu, S. Org. Lett. 2005, 7,
5063–5065.
(8) Two instances of enantioselective conjugate addition in the pre-
sence of protected indoles exist: (a) Wilsily, A.; Fillion, E. J. Org. Chem.
2009, 74, 8583–8594. (b) Sieber, J. D.; Morken, J. P. J. Am. Chem. Soc.
2008, 130, 4978–4983.
(0.1 equiv)
LiCl
70 °C
ClCH2CH2Cl, 38% (54%) 99%
(0.1 equiv)
Mg(Ot-Bu)2
(0.1 equiv)
Mg(Ot-Bu)2
(0.1 equiv)
70 °C
ClCH2CH2Cl, 48% (51%) 99%
70 °C
ClCH2CH2Cl, 49% (36%) 98%
reflux
(9) (a) Boal, B. W.; Schammel, A. W.; Garg, N. K. Org. Lett. 2009,
11, 3458–3461. (b) Schammel, A. W.; Boal, B. W.; Zu, L.; Mesganaw, T.;
a Yields determined by comparison of NMR peaks to an internal
standard.15 b Determined for the purified product via analytical HPLC.
c ee’s were not determined.
€
€
Garg, N. K. Tetrahedron 2010, 66, 4687–4695. (c) C-elebi-Olc-um, N.;
Boal, B. W.; Huters, A. D.; Garg, N. K.; Houk, K. N. J. Am. Chem. Soc.
2011, 133, 5752–5755.
(10) (a) Satoh, Y.; Serizawa, H.; Hara, S.; Suzuki, A. J. Am. Chem.
Soc. 1985, 107, 5225–5228. (b) Hara, S.; Hyuga, S.; Aoyama, M.; Sato,
M.; Suzuki, A. Tetrahedron Lett. 1990, 31, 247–250. (c) Fujishima, H.;
Takada, E.; Hara, S.; Suzuki, A. Chem. Lett. 1992, 695–698. (d) Hara, S.;
Ishimura, S.; Suzuki, A. Synlett 1996, 993–994. (e) Hara, S.; Shudoh, H.;
Ishimura, S.; Suzuki, A. Bull. Chem. Soc. Jpn. 1998, 71, 2403–2408.
(11) (a) Suzuki, A.; Arase, A.; Matsumoto, H.; Itoh, M.; Brown,
H. C.; Rogic, M. M.; Rathke, M. W. J. Am. Chem. Soc. 1967, 89, 5708–
5709. (b) Brown, H. C.; Rogic, M. M.; Rathke, M. W.; Kabalka, G. W.
J. Am. Chem. Soc. 1967, 89, 5709–5710. (c) Jacob, P.; Brown, H. C. J.
Am. Chem. Soc. 1976, 98, 7832–7833.
(12) (a) Chong, J. M.; Shen, L.; Taylor, N. J. J. Am. Chem. Soc. 2000,
122, 1822–1823. (b) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2005,
127, 3244–3245. (c) Wu, T. R.; Chong, J. M. Org. Lett. 2006, 8, 15–18. (d)
Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2007, 129, 4908–4909.
(13) (a) McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125,
12094–12095. (b) McDougal, N. T.; Trevellini, W. L.; Rodgen, S. A.;
Kliman, L. T.; Schaus, S. E. Adv. Synth. Catal. 2004, 346, 1231–1240. (c)
Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem. Soc. 2006, 128,
12660–12661. (d) Lou, S.; Moquist, P. N.; Schaus, S. E. J. Am. Chem.
Soc. 2007, 129, 15398–15404. (e) Ting, A.; Schaus, S. E. Eur. J. Org.
Chem. 2007, 5797–5815. (f) Lou, S.; Schaus, S. E. J. Am. Chem. Soc.
2008, 130, 6922–6923. (g) Moquist, P. N.; Kodama, T.; Schaus, S. E.
Angew. Chem., Int. Ed. 2010, 49, 7096–7100.
To address the first of these issues, we looked to use
readily available, easily purified, and conveniently handled
boronic acids or their dehydrated congeners, boroxines.16
We reasoned that boroxines could act as reactive surro-
gates for boronicestersforthe initial formation of BINOL-
boronic esters 5 (Figure 1).17,18 Importantly, these vinyl
nucleophiles are usually more easily accessed, functiona-
lized, and stored than their zinc, copper, aluminum, or
magnesium congeners. The use of a boronic acid did not
initially fare well with enone 1 and the known catalyst 3
(entry 1, Table 1). However, when elevated temperatures
and a nonpolarsolvent were used, someproduct formation
occurred (entry 3).
(14) (a) Inokuma, T.; Takasu, K.; Sakaeda, T.; Takemoto, Y. Org.
Lett. 2009, 11, 2425–2428. (b) Sugiura, M.; Tokudomi, M.; Nakajima,
M. Chem. Commun. 2010, 46, 7799–7800.
Org. Lett., Vol. 13, No. 18, 2011
4959