2137
S. Sano et al.
Letter
Synlett
14f–h (tri-substituted allenes) were obtained in the HWE
reaction of Weinreb amide 11 with mono-substituted
ketenes derived from acyl chlorides 5f–h (entries 9–12).
In conclusion, we have developed a facile method of
synthesizing conjugated allenyl esters 6 and 8 through the
magnesium(II)-mediated HWE reaction of 1 and 7 with di-
substituted ketenes, which were prepared in situ from the
corresponding acid chlorides. For the first time, α-fluorinat-
ed allenyl carboxamides 14 have also been prepared by us-
ing the magnesium(II)-mediated HWE reaction of 11 with
di-substituted ketenes. We believe that the proposed meth-
od of synthesizing conjugated allenyl carboxylic acid deriv-
atives is a valuable addition to the chemistry of allenes.
Watanabe, T.; Tanaka, K. Tetrahedron: Asymmetry 2001, 12, 669.
(d) Nagaoka, Y.; Inoue, H.; Tomioka, K. Phosphorus, Sulfur Silicon
Relat. Elem. 2002, 177, 1843. (e) Inoue, H.; Tsubouchi, H.;
Nagaoka, Y.; Tomioka, K. Tetrahedron 2002, 58, 83. (f) Huang, X.;
Xiong, Z.-C. Chem. Commun. 2003, 1714. (g) Plunkett, S.; Dahms,
K.; Senge, M. O. Eur. J. Org. Chem. 2013, 1566.
(9) For examples of Wittig reactions, see: (a) Kresze, G.; Runge, W.;
Ruch, E. Justus Liebigs Ann. Chem. 1972, 756, 112. (b) Bestmann,
H.-J.; Hartung, H. Chem. Ber. 1966, 99, 1198. (c) Aksnes, G.;
Frøyen, P. Acta Chem. Scand. 1968, 22, 2347. (d) Lang, R. W.;
Hansen, H.-J. Helv. Chim. Acta 1979, 62, 1025. (e) Lang, R. W.;
Hansen, H.-J. Helv. Chim. Acta 1980, 63, 438. (f) Himbert, G.;
Fink, D. J. Prakt. Chem. 1997, 339, 233. (g) Pinho e Melo, T. M. V.
D.; Cardoso, A. L.; d’A. Rocha Gonsalves, A. M.; Costa Pessoa, J.;
Paixão, J. A.; Beja, A. M. Eur. J. Org. Chem. 2004, 4830. (h) Li, C.-
Y.; Sun, X.-L.; Jing, Q.; Tang, Y. Chem. Commun. 2006, 2980. (i) Li,
C.-Y.; Wang, X.-B.; Sun, X.-L.; Tang, Y.; Zheng, J.-C.; Xu, Z.-H.;
Zhou, Y.-G.; Dai, L.-X. J. Am. Chem. Soc. 2007, 129, 1494. (j) Li, C.-
Y.; Zhu, B.-H.; Ye, L.-W.; Jing, Q.; Sun, X.-L.; Tang, Y.; Shen, Q.
Tetrahedron 2007, 63, 8046. (k) Liu, W.-B.; He, H.; Dai, L.-X.; You,
S.-L. Chem. Eur. J. 2010, 16, 7376.
Acknowledgment
This work was supported in part by a JSPS KAKENHI Grant (Number
2359007) and by a Grant for the Regional Innovation Cluster Program
(Global Type) promoted by MEXT.
(10) DeHoff, B.; Roy, M.-N. Methyl bis(2,2,2-trifluoroethoxy)phos-
phinylacetate, In e-EROS Encyclopedia of Reagents for Organic
Synthesis; Wiley: New York, 2012.
(11) (a) Still, W. C.; Gennari, C. Tetrahedron Lett. 1983, 24, 4405.
(b) Messik, F.; Oberthür, M. Synthesis 2013, 45, 167.
Supporting Information
Supporting information for this article is available online at
(12) Typical Procedure: To a solution of methyl bis(2,2,2-trifluoro-
ethyl)phosphonoacetate (1; 40 μL, 0.188 mmol) in anhydrous
THF (1.9 mL) was added i-PrMgBr (0.77 mol/L in THF, 269 μL,
0.207 mmol), and the solution was stirred at 0 °C for 1 h under
argon. After adding triethylamine (53 μL, 0.377 mmol) and 2-
phenylpropionyl chloride (5a; 56 μL, 0.377 mmol), the mixture
was stirred at 0 °C for 1 h under argon. The reaction mixture
was treated with sat. aq NH4Cl (2 mL) and then extracted with
CHCl3 (3 × 20 mL). The extract was dried over anhydrous MgSO4,
filtered, and concentrated in vacuo. The oily residue was puri-
fied by silica gel column chromatography (n-hexane–EtOAc,
12.5:1 to 11:1) to afford allenyl ester 6a (34.7 mg, 98%).
(13) Data for 6a: Pale-yellow oil; IR (neat): 2951, 1948, 1722, 1495,
1437, 1392, 1263, 1209, 1151 cm–1. 1H NMR (500 MHz, CDCl3):
δ = 2.21 (d, J = 2.9 Hz, 3 H), 3.75 (s, 3 H), 5.90 (q, J = 2.9 Hz, 1 H),
7.27–7.28 (m, 1 H), 7.33–7.40 (m, 4 H). 13C NMR (125 MHz,
CDCl3): δ = 16.2, 52.1, 89.5, 105.5, 126.2, 127.9, 128.6, 134.3,
166.1, 214.0. MS (ESI): m/z [M + Na]+ calcd for C12H12NaO2:
211.0735; found: 211.0732. Anal. Calcd for C12H12O2: C, 76.57;
H, 6.43. Found: C, 76.27; H, 6.54.
(14) (a) Sano, S.; Ando, T.; Yokoyama, K.; Nagao, Y. Synlett 1998, 777.
(b) Sano, S.; Teranishi, R.; Nagao, Y. Tetrahedron Lett. 2002, 43,
9183. (c) Sano, S.; Takemoto, Y.; Nagao, Y. ARKIVOC 2003, (viii),
93. (d) Sano, S.; Takemoto, Y.; Nagao, Y. Tetrahedron Lett. 2003,
44, 8853. (e) Sano, S.; Matsumoto, T.; Nanataki, H.; Tempaku, S.;
Nakao, M. Tetrahedron Lett. 2014, 55, 6248.
(15) Roy, M.-N. Ethyl 2-(diphenoxyphosphinyl)acetate, In e-EROS
Encyclopedia of Reagents for Organic Synthesis; Wiley: New York,
2013.
S
u
p
p
ortiInfogrmoaitn
S
u
p
p
ortioInfgrmoaitn
References
(1) (a) Burton, B. S.; von Pechmann, H. Ber. Dtsch. Chem. Ges. 1887,
20, 145. (b) Jones, E. R. H.; Mansfield, G. H.; Whiting, M. C. J.
Chem. Soc. 1954, 3208.
(2) (a) Staudinger, H.; Ruzicka, L. Helv. Chim. Acta 1924, 7, 177.
(b) Maitland, P.; Mills, W. H. Nature 1935, 135, 994. (c) Taylor, D.
R. Chem. Rev. 1967, 67, 317.
(3) (a) Brummond, K. M.; DeForrest, J. E. Synthesis 2007, 795.
(b) Kim, H.; Williams, L. J. Curr. Opin. Drug Discovery Dev. 2008,
11, 870. (c) Pinho e Melo, T. M. V. D. Monatsh. Chem. 2011, 142,
681. (d) Yu, S.; Ma, S. Chem. Commun. 2011, 47, 5384. (e) Yu, S.;
Ma, S. Angew. Chem. Int. Ed. 2012, 51, 3074. (f) Alcaide, B.;
Almendros, P. Chem. Soc. Rev. 2014, 43, 2886.
(4) Hoffmann-Röder, A.; Krause, N. Angew. Chem. Int. Ed. 2004, 43,
1196.
(5) (a) Nagao, Y.; Kim, K.; Sano, S.; Kakegawa, H.; Lee, W. S.;
Shimizu, H.; Shiro, M.; Katunuma, N. Tetrahedron Lett. 1996, 37,
861. (b) Sano, S.; Shimizu, H.; Nagao, Y. Tetrahedron Lett. 2005,
46, 2883. (c) Sano, S.; Shimizu, H.; Kim, K.; Lee, W. S.; Shiro, M.;
Nagao, Y. Chem. Pharm. Bull. 2006, 54, 196.
(6) (a) Nagao, Y.; Sano, S.; Morimoto, K.; Kakegawa, H.; Takatani, T.;
Shiro, M.; Katunuma, N. Tetrahedron Lett. 2000, 41, 2419.
(b) Takeuchi, Y.; Fujiwara, T.; Shimone, Y.; Miyataka, H.; Satoh,
T.; Kirk, K. L.; Hori, H. Bioorg. Med. Chem. Lett. 2008, 18, 6202.
(7) (a) Horner, L.; Hoffmann, H.; Wippel, H. G.; Klahre, G. Chem. Ber.
1959, 92, 2499. (b) Wadsworth, W. S. Jr.; Emmons, W. D. J. Am.
Chem. Soc. 1961, 83, 1733. (c) Maryanoff, B. E.; Reitz, A. B. Chem.
Rev. 1989, 89, 863. (d) Bisceglia, J. A.; Orelli, L. R. Curr. Org. Chem.
2012, 16, 2206. (e) Al Jasem, Y.; El-Esawi, R.; Thiemann, T. J.
Chem. Res. 2014, 38, 453.
(16) (a) Ando, K. Tetrahedron Lett. 1995, 36, 4105. (b) Ando, K. J. Org.
Chem. 1997, 62, 1934. (c) Ando, K. J. Org. Chem. 1998, 63, 8411.
(d) Ando, K. J. Org. Chem. 1999, 64, 8406. (e) Ando, K.; Oishi, T.;
Hirama, M.; Ohno, H.; Ibuka, T. J. Org. Chem. 2000, 65, 4745.
(f) Ando, K. Synlett 2001, 1272.
(17) (a) Sano, S.; Takehisa, T.; Ogawa, S.; Yokoyama, K.; Nagao, Y.
Chem. Pharm. Bull. 2002, 50, 1300. (b) Sano, S.; Abe, S.; Azetsu,
T.; Nakao, M.; Shiro, M.; Nagao, Y. Lett. Org. Chem. 2006, 3, 798.
(8) For examples of HWE reactions, see: (a) Runge, W.; Kresze, G.
Justus Liebigs Ann. Chem. 1975, 1361. (b) Tanaka, K.; Otsubo, K.;
Fuji, K. Tetrahedron Lett. 1996, 37, 3735. (c) Yamazaki, J.;
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 2135–2138