M. Anbazhagan et al. / Tetrahedron Letters 43 (2002) 9089–9092
9091
Table 2. Synthesis of N-aryl amidoximes 422
Complexes; Demeunynck, M.; Bailly, C.; Wilson, W. D.,
Eds.; Wiley-VCH: Hoboken, NJ, 2002.
Entry
R
Reaction time (h)
Yield (%)a
4. (a) Boykin, D. W.; Kumar, A.; Hall, J. E.; Bender, B. C.;
Tidwell, R. R. Bioorg. Med. Chem. Lett. 1996, 6, 3017;
(b) Weller, T.; Alieg, L.; Beresini, M.; Blackburn, B.;
Bunting, S.; Hadvary, P.; Muller, M. H.; Knopp, D.;
Levet-Trafit, B.; Lipari, M. T.; Modi, N. B.; Muller, M.;
Refino, C. J.; Schmitt, M.; Schonholzer, P.; Weiss, S.;
Steiner, B. J. Med. Chem. 1996, 39, 3139; (c) Hall, J. E.;
Kerrigan, J. E.; Ramachandran, K.; Bender, B. C.;
Stanko, J. P.; Jones, S. K.; Patrick, D. A.; Tidwell, R. R.
Antimicrob. Agents Chemother. 1998, 42, 666.
5. Tucker, J. A.; Clayton, T. L.; Chidester, C. G.; Schulz,
M. W.; Harrington, L. E.; Conrad, S. J.; Yagi, Y.; Oien,
N. L.; Yurek, D.; Kuo, M.-S. Bioorg. Med. Chem. 2000,
8, 601.
1
2
3
4
5
6
7
H
6
4
4
6
6
6
4
61
68
70
75
72
65
Mixture
4-CF3
3-CH3
4-Cl
4-C6H5
4-NO2
4-CN
a Yields represent analytically pure material.
hydrogen donor (Pd/C as catalyst, reflux 4 days) left
the nitrile untouched, giving compound 6 in 52% yield
with a small amount of starting material (about 10%)
also being recovered (Scheme 2).
6. (a) Stephens, C. E.; Tanious, F.; Kim, S.; Wilson, D. W.;
Schell, W. A.; Perfect, J. R.; Franzblau, S. G.; Boykin, D.
W. J. Med. Chem. 2001, 44, 1741; (b) Werbovetz, K.;
Brendle, J.; Stephens, C. E.; Boykin, D. W. US Patentc
60/246,330, filed 11/7/00.
With methods in hand for cleavage of the O-benzylami-
doximes to the amidines, we next examined selective
conversion of these compounds to the amidoximes.
While heating with BF3 in CH2Cl2 or aqueous HBr
(48%) led to no O-debenzylation, reaction with HBr/
AcOH (30% by wt) at 65°C for about 6 h provided
good isolated yields of the amidoximes (Scheme 1,
Table 2). Not surprisingly, the nitrile group of 2h was
sensitive to these acidic conditions, and an inseparable
mixture was obtained in this case (Table 2, entry 7).
7. Shearer, B. G.; Oplinger, J. A.; Lee, S. Tetrahedron Lett.
1997, 38, 179.
8. Khanna, I. K.; Yu, Y.; Huff, R. M.; Weier, R. M.; Xu,
X.; Koszyk, F. J.; Collins, P. W.; Cogburn, J. N.; Isak-
son, P. C.; Koboldt, C. M.; Masferrer, J. L.; Perkins, W.
E.; Seibert, K.; Veenhuizen, A. W.; Yuan, J.; Yang,
D.-C.; Zhang, Y. Y. J. Med. Chem. 2000, 43, 3168.
9. Grundmann, C.; Frommeld, H.-C. J. Org. Chem. 1966,
31, 157.
In summary, we have described methods for selective
conversion of O-benzyl-N-arylamidoximes to the corre-
sponding amidines or amidoximes. These regioselective
methods of deprotection provide convenient methodol-
ogy for synthesis of these biologically important com-
pounds by way of Pd-catalyzed N-arylation chemistry.
10. Grundmann, C.; Dean, J. M. J. Org. Chem. 1965, 30,
2809.
11. (a) Boyer, J. H.; Frints, P. J. A. J. Org. Chem. 1968, 33,
4554; (b) Briggs, L. S.; Cambrie, R. C.; Dean, I. C.;
Rutledge, P. S. Aust. J. Chem. 1976, 29, 357.
12. Prim, D.; Campagne, J.-M.; Joseph, D.; Andrioletti, B.
Tetrahedron 2002, 58, 2041.
Acknowledgements
13. Anbazhagan, M.; Stephens, C. E.; Boykin, D. W. Tetra-
hedron Lett. 2002, 43, 4221.
14. Judkins, B. D.; Allen, D. G.; Cook, T. A.; Evans, B.;
Sardharwala, T. E. Synth. Commun. 1996, 26, 4351.
15. Spectral data for benzylamine derivative: l H NMR (300
This work was supported by awards from NIH (Grants
NIAID RO1AI 46365, RO1GM61587), the Bill and
Melinda Gates Foundation, and Immtech Interna-
tional, Inc.
1
MHz, DMSO-d6): 1.82 (s, 3H, CH3); 2.30 (s, 3H, CH3);
4.15 (d, 2H, J=4.5 Hz, NCH2); 6.09 (br, 2H, NH); 6.73
(d, 2H, J=6.0 Hz, Ar); 7.13 (d, 2H, J=6.0 Hz, Ar); 7.17
(d, 2H, J=6.0 Hz, Ar); 7.80 (d, 2H, J=5.4 Hz, Ar). l 13C
NMR (DMSO-d6): 21.7, 23.2, 42.8, 122.8, 127.8, 129.3,
129.8, 133.2, 133.8, 141.3, 149.2, 157.1, 171.6. MS (EI)
m/z (%): 281.2 (M+, 64%), 265 (18%), 211.2 (6%), 164.1
(8%), 118.1 (75%), 106.1 (100%), 77.1 (45%).
References
1. (a) Zhu, B.-Y.; Scarborough, R. M. Annu. Rep. Med.
Chem. 2000, 35, 83; (b) Smallheer, J. M.; Olson, R. E.;
Wexler, R. R. Annu. Rep. Med. Chem. 2000, 35, 103; (c)
Fevig, J. M.; Wexler, R. R. Annu. Rep. Med. Chem. 1999,
34, 81; (d) Liebeschuetz, J. W.; Jones, S. D.; Morgan, P.
J.; Murray, C. W.; Rimmer, A. D.; Roscoe, J. M. E.;
Waszkowycz, B.; Welsch, P. M.; Wylie, W. A.; Young, S.
C.; Martin, H.; Mahler, J.; Brady, L.; Wilkinson, K. J.
Med. Chem. 2002, 45, 1221.
2. Collins, J. L.; Shearer, B. G.; Oplinger, J. A.; Lee, S.;
Garvey, E. P.; Salter, M.; Duffy, C.; Burnette, T. C.;
Furfine, E. S. J. Med. Chem. 1998, 41, 2858.
3. Tidwell, R. R.; Boykin, D. W. Dicationic DNA Minor
Groove Binders as Antimicrobial Agents in Small Molecule
DNA and RNA Binders: From Synthesis to Nucleic Acid
16. Johnstone, R. A. W.; Wilby, A. H.; Entwistle, I. D.
Chem. Rev. 1985, 85, 129.
17. For a review of the use of AF in transfer hydrogenations,
see: Ram, S.; Ehrenkaufer, R. E. Synthesis 1998, 91.
18. The partial reduction of biphenyl derivatives by transfer
hydrogenation has been reported: Andrews, M. J.; Pillai,
C. N. Indian J. Chem. 1978, 465. Also see Ref. 16.
19. Brown, G. R.; Foubister, A. J. Synthesis 1982, 1036.
20. Method A (Table 1, entry 1): An oven-dried 25 mL
round-bottomed flask was charged with 316 mg of 1 and
10 mL of glacial acetic acid. To that 0.5 mL of acetic
anhydride and 31 mg of Pd/C (10%) was added. The
mixture was hydrogenated at 40 psi for 4 h. No starting