10.1002/chem.201704099
Chemistry - A European Journal
FULL PAPER
Supplemental results, experimental procedures and spectra data of
compounds were available in ESI.
[11] M. Egi, T. Kawai, M. Umemura, S. Akai, J. Org. Chem. 2012, 77,
7092–7097.
[12] G. G. K. S. N. Kumar, K. K. Laali, Org. Biomol. Chem. 2012, 10,
7347–7355.
[13] a) H. Ledon, I. Tkatchenko, D. Young, Tetrahedron Lett. 1979, 20,
173–176. b) F. Sato, Y. Tomuro, H. Ishikawa, T. Oikawa, M. Sato,
Chem. Lett. 1980, 103–106. c) Y. Xiao, L. Chu, Y. Sanakis, P. Liu, J.
Am. Chem. Soc. 2009, 131, 9931–9933. d) H. R. Diéguez, A. López,
V. Domingo, J. F. Arteaga, J. A. Dobado, M. M. Herrador, J. F. Quílez
del Moral, A. F. Barrero, J. Am. Chem. Soc. 2010, 132, 254–259.
[14] A. Srikrishna, R. Viswajanani, J. A. Sattigeri, C. V. Yelamaggad,
Tetrahedron Lett. 1995, 36, 2347–2350.
Acknowledgements
The authors wish to thank Prof. R. Noyori (NU) and Prof. Kudo
(Tokyo University of Science) for fruitful discussions. We are
also grateful to T. Noda, H. Natsume, and H. Okamoto (NU) for
their support in the production of reaction vessels. This
research was partially supported by Advanced Catalytic
Transformation program for Carbon utilization (ACT-C), JST (to
S.S.), the Asashi Glass Foundation (to S.S.), Grant-in-Aid for
Scientific Research C (General, 26410115, to H.N.) from MEXT
and by funds from Tobe Maki Scholarship Foundation (to H.N.).
Y.T. appreciates the Japan Society for the Promotion of
Science (JSPS) for a Research Fellowship for young scientists.
[15] a) Z. Liu, J. Caner, A. Kudo, H. Naka, S. Saito, Chem. - A Eur. J. 2013,
19, 9452–9456. b) V. N. Tsarev, Y. Morioka, J. Caner, Q. Wang, R.
Ushimaru, A. Kudo, H. Naka, S. Saito, Org. Lett. 2015, 17, 2530–2533.
c) M. Shibata, R. Nagata, S. Saito, H. Naka, Chem. Lett. 2017, 46,
580–582.
[16] J. Caner, Z. Liu, Y. Takada, A. Kudo, H. Naka, S. Saito, Catal. Sci.
Technol. 2014, 4, 4093–4098.
[17] Pd/TiO2 was prepared using PdCl2 and characterised by ICP-OES,
HRTEM and XPS analysis (ref. 16).
Keywords: hydrogenolysis • photocatalysis • allylic alcohols •
[18] a) S. H. Pang, A. M. Román, J. W. Medlin, J. Phys. Chem. C 2012,
116, 13654–13660. b) C.-H. Lien, J. W. Medlin, J. Phys. Chem. C
2014, 118, 23783–23789. c) T. P. Ruberu, N. C. Nelson, I. I. Slowig, J.
Vela, J. Phys. Chem. Lett. 2012, 3, 2798–2802. d) Y. Shiraishi, K.
Fujiwara, Y. Sugano, S. Ichikawa, T. Hirai, ACS Catal. 2013, 3, 312–
320. e) E. Sadeghmoghaddam, H. Gu, Y.-S. Shon, ACS Catal. 2012,
2, 1838–1845. f) D. J. Gavia, M. S. Maung, Y.-S. Shon, ACS Appl.
Mater. Interfaces 2013, 5, 12432–12440.
titanium oxide • palladium
[1]
[2]
Reviews: a) A. M. Ruppert, K. Weinberg, R. Palkovits, Angew. Chem.
2012, 124, 2614–2654; Angew. Chem. Int. Ed. 2012, 51, 2564–2601.
b) J. M. Herrmann, B. König, European J. Org. Chem. 2013, 7017–
7027.
Reviews: a) E. Furimsky, Appl. Catal. A Gen., 2000, 199, 147–190. b)
A. Zacher, M. Olarte, D. Santosa, Green Chem., 2014, 16, 491–515;
c) S. De, B. Saha, R. Luque, Bioresour. Technol., 2015, 178, 108–118.
M. M. Smith. March's Advanced Organic Chemistry 7th ed., John
Wiley & Sons, 2013.
[19] a) K. Hashimoto, Y. Masuda, H. Kominami, ACS Catal. 2013, 3, 1349–
1355. b) Y. Li, C. Ma, H. Yang, Z. Zhang, X. Zhang, N. Qiao, J. Wang,
Z. Hao, Chem. Eng. J. 2016, 299, 1–7. c) A. Elhage, A. E. Lanterna, J.
C. Scaiano, ACS Catal. 2017, 7, 250–255.
[3]
[4]
[5]
[20] At t = 4.5 h, yield of Z-2e (46%) is significantly larger than that of E-2e
(11%), indicating that double bond isomerization of Z-2e gave E-2e.
[21] J. Hori, K. Murata, T. Sugai, H. Shinohara, R. Noyori, N. Arai, N.
Kurono, T. Ohkuma, Adv. Synth. Catal. 2009, 351, 3143–3149.
[22] In table 1, the highest yield of E-2a was obtained at light irradiation
time of 4.5 h. However, during epoxidation experiment, t = 4 h was
better due to a slight difference of the light intensity.
A. A. Newman, Ed. Chemistry of Terpenes and Terpenoids, Academic
Press, 1972.
a) M. Shiramizu, F. D. Toste, Angew. Chem. 2012, 124, 8206–8210;
Angew. Chem. Int. Ed. 2012, 51, 8082–8086. b) A. Konaka, T. Tago, T.
Yoshikawa, H. Shitara, Y. Nakasaka, T. Masuda, Ind. Eng. Chem. Res.
2013, 52, 15509–15515. c) V. Canale, L. Tonucci, M. Bressan, N.
D’Alessandro, Catal. Sci. Technol. 2014, 4, 3697–3704. d) A. Konaka,
T. Tago, T. Yoshikawa, A. Nakamura, T. Masuda, Appl. Catal. B
Environ. 2014, 146, 267–273. e) G. Sánchez, J. Friggieri, A. A.
Adesina, B. Z. Dlugogorski, E. M. Kennedy, M. Stockenhuber, Catal.
Sci. Technol. 2014, 4, 3090. f) C. Boucher-Jacobs, K. M. Nicholas,
Organometallics 2015, 34, 1985–1990. g) S. Raju, M.-E. Moret, R. J.
M. Klein Gebbink, ACS Catal. 2015, 5, 281–300. h) G. Sánchez, B. Z.
Dlugogorski, E. M. Kennedy, M. Stockenhuber, Appl. Catal. A Gen.
2016, 509, 130–142.
[23] a) J. Hadian, A. Sonboli, S. Nejad Ebrahimi, M. H. Mirjalili, Chem. Nat.
Compd. 2006, 42, 175–177. b) H. Y. Ho, C. C. Hung, T. H. Chuang, W.
L. Wang, J. Chem. Ecol. 2007, 33, 1986–1996.
[24] H. Sakauchi, H. Kiyota, S. Takigawa, T. Oritani, S. Kuwahara, Chem.
Biodivers. 2005, 2, 1183–1186.
[25] a) Y. Ueno, S. Aoki, M. Okawara, J. Chem. Soc. Chem. Commun.
1980, 683–684. b) G. Cardillo, A. D’Amico, M. Orena, S. Sandri, J.
Org. Chem. 1988, 53, 2354–2356. c) S. Araki, S. Kambe, K. Kameda,
T. Hirashita, Synthesis (Stuttg). 2003, 751–754. d) G. Mehta, S.
Karmakar, S. K. Chattopadhyay, Tetrahedron 2004, 60, 5013–5017. e)
R. A. Fernandes, A. K. Chowdhury, Eur. J. Org. Chem. 2013, 2013,
5165–5170.
[6]
[7]
a) A. Wróblewska, E. Makuch, React. Kinet. Mech. Catal. 2012, 105,
451–468. b) L. Harvey, E. Kennedy, B. Z. Dlugogorski, M.
Stockenhuber, Appl. Catal. A Gen. 2015, 489, 241–246.
a) E. Sadeghmoghaddam, H. Gu, Y. S. Shon, ACS Catal. 2012, 2,
1838–1845. b) M. Moreno, L. N. Kissell, J. B. Jasinski, F. P. Zamborini,
ACS Catal. 2012, 2, 2602–2613. c) R. Bhandari, D. B. Pacardo, N. M.
Bedford, R. R. Naik, M. R. Knecht, J. Phys. Chem. C 2013, 117,
18053–18062.
[26] H. J. Kim, L. Su, H. Jung, S. Koo, Org. Lett. 2011, 13, 2682–2685.
[27] a) A. V. Malkov, M. Bella, I. G. Stará, P. Kočovský, Tetrahedron Lett.
2001, 42, 3045–3048. b) F. Z. Macaev, A. V. Malkov, Tetrahedron
2006, 62, 9–29. c) J. Kulhánek, F. Bureš, P. Šimon, W. Bernd
Schweizer, Tetrahedron: Asymmetry 2008, 19, 2462–2469.
[28] G. A Olah, Angew. Chem. 2005, 117, 2692–2696; Angew. Chem. Int.
Ed. 2005, 44, 2636–2639.
[8]
[9]
a) P. S. Fordred, D. G. Niyadurupola, R. Wisedale, S. Bull, Adv. Synth.
Catal. 2009, 351, 2310–2314. b) K. Voronova, M. Purgel, A. Udvardy,
A. C. Bényei, Á. Kathó, F. Joó, Organometallics 2013, 32, 4391–4401.
c) D. Zsolnai, P. Mayer, K. Szőri, G. London, Catal. Sci. Technol. 2016,
6, 3814–3820.
[29] a) M. Shen, M. A. Henderson, J. Phys. Chem. Lett. 2011, 2, 2707–
2710. b) Z. Wang, Q. Hao, X. Mao, C. Zhou, D. Dai, X. Yang, Phys.
Chem. Chem. Phys. 2016, 18, 10224–10231.
T. Funabiki, Y. Yamazaki, K. Tarama, J. Chem. Soc. Chem. Commun.
1978, 63.
[10] J.-T. Lee, H. Alper, Tetrahedron Lett. 1990, 31, 4101–4104.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.